Abstract:Sequential recommendation aims to model dynamic user behavior from historical interactions. Self-attentive methods have proven effective at capturing short-term dynamics and long-term preferences. Despite their success, these approaches still struggle to model sparse data, on which they struggle to learn high-quality item representations. We propose to model user dynamics from shopping intents and interacted items simultaneously. The learned intents are coarse-grained and work as prior knowledge for item recommendation. To this end, we present a coarse-to-fine self-attention framework, namely CaFe, which explicitly learns coarse-grained and fine-grained sequential dynamics. Specifically, CaFe first learns intents from coarse-grained sequences which are dense and hence provide high-quality user intent representations. Then, CaFe fuses intent representations into item encoder outputs to obtain improved item representations. Finally, we infer recommended items based on representations of items and corresponding intents. Experiments on sparse datasets show that CaFe outperforms state-of-the-art self-attentive recommenders by 44.03% NDCG@5 on average.
Abstract:Human group detection, which splits crowd of people into groups, is an important step for video-based human social activity analysis. The core of human group detection is the human social relation representation and division.In this paper, we propose a new two-stage multi-head framework for human group detection. In the first stage, we propose a human behavior simulator head to learn the social relation feature embedding, which is self-supervisely trained by leveraging the socially grounded multi-person behavior relationship. In the second stage, based on the social relation embedding, we develop a self-attention inspired network for human group detection. Remarkable performance on two state-of-the-art large-scale benchmarks, i.e., PANDA and JRDB-Group, verifies the effectiveness of the proposed framework. Benefiting from the self-supervised social relation embedding, our method can provide promising results with very few (labeled) training data. We will release the source code to the public.
Abstract:To obtain a more comprehensive activity understanding for a crowded scene, in this paper, we propose a new problem of panoramic human activity recognition (PAR), which aims to simultaneous achieve the individual action, social group activity, and global activity recognition. This is a challenging yet practical problem in real-world applications. For this problem, we develop a novel hierarchical graph neural network to progressively represent and model the multi-granularity human activities and mutual social relations for a crowd of people. We further build a benchmark to evaluate the proposed method and other existing related methods. Experimental results verify the rationality of the proposed PAR problem, the effectiveness of our method and the usefulness of the benchmark. We will release the source code and benchmark to the public for promoting the study on this problem.
Abstract:High-quality phrase representations are essential to finding topics and related terms in documents (a.k.a. topic mining). Existing phrase representation learning methods either simply combine unigram representations in a context-free manner or rely on extensive annotations to learn context-aware knowledge. In this paper, we propose UCTopic, a novel unsupervised contrastive learning framework for context-aware phrase representations and topic mining. UCTopic is pretrained in a large scale to distinguish if the contexts of two phrase mentions have the same semantics. The key to pretraining is positive pair construction from our phrase-oriented assumptions. However, we find traditional in-batch negatives cause performance decay when finetuning on a dataset with small topic numbers. Hence, we propose cluster-assisted contrastive learning(CCL) which largely reduces noisy negatives by selecting negatives from clusters and further improves phrase representations for topics accordingly. UCTopic outperforms the state-of-the-art phrase representation model by 38.2% NMI in average on four entity cluster-ing tasks. Comprehensive evaluation on topic mining shows that UCTopic can extract coherent and diverse topical phrases.
Abstract:Ex vivo MRI of the brain provides remarkable advantages over in vivo MRI for visualizing and characterizing detailed neuroanatomy. However, automated cortical segmentation methods in ex vivo MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution 7 Tesla dataset of 32 ex vivo human brain specimens. We benchmark the cortical mantle segmentation performance of nine neural network architectures, trained and evaluated using manually-segmented 3D patches sampled from specific cortical regions, and show excellent generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at different magnetic field strength and imaging sequences. Finally, we provide cortical thickness measurements across key regions in 3D ex vivo human brain images. Our code and processed datasets are publicly available at https://github.com/Pulkit-Khandelwal/picsl-ex-vivo-segmentation.
Abstract:We study the problem of building entity tagging systems by using a few rules as weak supervision. Previous methods mostly focus on disambiguation entity types based on contexts and expert-provided rules, while assuming entity spans are given. In this work, we propose a novel method TALLOR that bootstraps high-quality logical rules to train a neural tagger in a fully automated manner. Specifically, we introduce compound rules that are composed from simple rules to increase the precision of boundary detection and generate more diverse pseudo labels. We further design a dynamic label selection strategy to ensure pseudo label quality and therefore avoid overfitting the neural tagger. Experiments on three datasets demonstrate that our method outperforms other weakly supervised methods and even rivals a state-of-the-art distantly supervised tagger with a lexicon of over 2,000 terms when starting from only 20 simple rules. Our method can serve as a tool for rapidly building taggers in emerging domains and tasks. Case studies show that learned rules can potentially explain the predicted entities.
Abstract:Visual Storytelling~(VIST) is a task to tell a narrative story about a certain topic according to the given photo stream. The existing studies focus on designing complex models, which rely on a huge amount of human-annotated data. However, the annotation of VIST is extremely costly and many topics cannot be covered in the training dataset due to the long-tail topic distribution. In this paper, we focus on enhancing the generalization ability of the VIST model by considering the few-shot setting. Inspired by the way humans tell a story, we propose a topic adaptive storyteller to model the ability of inter-topic generalization. In practice, we apply the gradient-based meta-learning algorithm on multi-modal seq2seq models to endow the model the ability to adapt quickly from topic to topic. Besides, We further propose a prototype encoding structure to model the ability of intra-topic derivation. Specifically, we encode and restore the few training story text to serve as a reference to guide the generation at inference time. Experimental results show that topic adaptation and prototype encoding structure mutually bring benefit to the few-shot model on BLEU and METEOR metric. The further case study shows that the stories generated after few-shot adaptation are more relative and expressive.
Abstract:Information diffusion prediction is a fundamental task for understanding the information propagation process. It has wide applications in such as misinformation spreading prediction and malicious account detection. Previous works either concentrate on utilizing the context of a single diffusion sequence or using the social network among users for information diffusion prediction. However, the diffusion paths of different messages naturally constitute a dynamic diffusion graph. For one thing, previous works cannot jointly utilize both the social network and diffusion graph for prediction, which is insufficient to model the complexity of the diffusion process and results in unsatisfactory prediction performance. For another, they cannot learn users' dynamic preferences. Intuitively, users' preferences are changing as time goes on and users' personal preference determines whether the user will repost the information. Thus, it is beneficial to consider users' dynamic preferences in information diffusion prediction. In this paper, we propose a novel dynamic heterogeneous graph convolutional network (DyHGCN) to jointly learn the structural characteristics of the social graph and dynamic diffusion graph. Then, we encode the temporal information into the heterogeneous graph to learn the users' dynamic preferences. Finally, we apply multi-head attention to capture the context-dependency of the current diffusion path to facilitate the information diffusion prediction task. Experimental results show that DyHGCN significantly outperforms the state-of-the-art models on three public datasets, which shows the effectiveness of the proposed model.
Abstract:This work studies membership inference (MI) attack against classifiers, where the attacker's goal is to determine whether a data instance was used for training the classifier. While it is known that overfitting makes classifiers susceptible to MI attacks, we showcase a simple numerical relationship between the generalization gap---the difference between training and test accuracies---and the classifier's vulnerability to MI attacks---as measured by an MI attack's accuracy gain over a random guess. We then propose to close the gap by matching the training and validation accuracies during training, by means of a new {\em set regularizer} using the Maximum Mean Discrepancy between the softmax output empirical distributions of the training and validation sets. Our experimental results show that combining this approach with another simple defense (mix-up training) significantly improves state-of-the-art defense against MI attacks, with minimal impact on testing accuracy.
Abstract:Existing methods in the Visual Storytelling field often suffer from the problem of generating general descriptions, while the image contains a lot of meaningful contents remaining unnoticed. The failure of informative story generation can be concluded to the model's incompetence of capturing enough meaningful concepts. The categories of these concepts include entities, attributes, actions, and events, which are in some cases crucial to grounded storytelling. To solve this problem, we propose a method to mine the cross-modal rules to help the model infer these informative concepts given certain visual input. We first build the multimodal transactions by concatenating the CNN activations and the word indices. Then we use the association rule mining algorithm to mine the cross-modal rules, which will be used for the concept inference. With the help of the cross-modal rules, the generated stories are more grounded and informative. Besides, our proposed method holds the advantages of interpretation, expandability, and transferability, indicating potential for wider application. Finally, we leverage these concepts in our encoder-decoder framework with the attention mechanism. We conduct several experiments on the VIsual StoryTelling~(VIST) dataset, the results of which demonstrate the effectiveness of our approach in terms of both automatic metrics and human evaluation. Additional experiments are also conducted showing that our mined cross-modal rules as additional knowledge helps the model gain better performance when trained on a small dataset.