Abstract:This paper introduces BLaIR, a series of pretrained sentence embedding models specialized for recommendation scenarios. BLaIR is trained to learn correlations between item metadata and potential natural language context, which is useful for retrieving and recommending items. To pretrain BLaIR, we collect Amazon Reviews 2023, a new dataset comprising over 570 million reviews and 48 million items from 33 categories, significantly expanding beyond the scope of previous versions. We evaluate the generalization ability of BLaIR across multiple domains and tasks, including a new task named complex product search, referring to retrieving relevant items given long, complex natural language contexts. Leveraging large language models like ChatGPT, we correspondingly construct a semi-synthetic evaluation set, Amazon-C4. Empirical results on the new task, as well as conventional retrieval and recommendation tasks, demonstrate that BLaIR exhibit strong text and item representation capacity. Our datasets, code, and checkpoints are available at: https://github.com/hyp1231/AmazonReviews2023.
Abstract:In Member Inference (MI) attacks, the adversary try to determine whether an instance is used to train a machine learning (ML) model. MI attacks are a major privacy concern when using private data to train ML models. Most MI attacks in the literature take advantage of the fact that ML models are trained to fit the training data well, and thus have very low loss on training instances. Most defenses against MI attacks therefore try to make the model fit the training data less well. Doing so, however, generally results in lower accuracy. We observe that training instances have different degrees of vulnerability to MI attacks. Most instances will have low loss even when not included in training. For these instances, the model can fit them well without concerns of MI attacks. An effective defense only needs to (possibly implicitly) identify instances that are vulnerable to MI attacks and avoids overfitting them. A major challenge is how to achieve such an effect in an efficient training process. Leveraging two distinct recent advancements in representation learning: counterfactually-invariant representations and subspace learning methods, we introduce a novel Membership-Invariant Subspace Training (MIST) method to defend against MI attacks. MIST avoids overfitting the vulnerable instances without significant impact on other instances. We have conducted extensive experimental studies, comparing MIST with various other state-of-the-art (SOTA) MI defenses against several SOTA MI attacks. We find that MIST outperforms other defenses while resulting in minimal reduction in testing accuracy.
Abstract:Owing to the unrestricted nature of the content in the training data, large text-to-image diffusion models, such as Stable Diffusion (SD), are capable of generating images with potentially copyrighted or dangerous content based on corresponding textual concepts information. This includes specific intellectual property (IP), human faces, and various artistic styles. However, Negative Prompt, a widely used method for content removal, frequently fails to conceal this content due to inherent limitations in its inference logic. In this work, we propose a novel strategy named \textbf{Degeneration-Tuning (DT)} to shield contents of unwanted concepts from SD weights. By utilizing Scrambled Grid to reconstruct the correlation between undesired concepts and their corresponding image domain, we guide SD to generate meaningless content when such textual concepts are provided as input. As this adaptation occurs at the level of the model's weights, the SD, after DT, can be grafted onto other conditional diffusion frameworks like ControlNet to shield unwanted concepts. In addition to qualitatively showcasing the effectiveness of our DT method in protecting various types of concepts, a quantitative comparison of the SD before and after DT indicates that the DT method does not significantly impact the generative quality of other contents. The FID and IS scores of the model on COCO-30K exhibit only minor changes after DT, shifting from 12.61 and 39.20 to 13.04 and 38.25, respectively, which clearly outperforms the previous methods.
Abstract:Sequential recommendation aims to model dynamic user behavior from historical interactions. Existing methods rely on either explicit item IDs or general textual features for sequence modeling to understand user preferences. While promising, these approaches still struggle to model cold-start items or transfer knowledge to new datasets. In this paper, we propose to model user preferences and item features as language representations that can be generalized to new items and datasets. To this end, we present a novel framework, named Recformer, which effectively learns language representations for sequential recommendation. Specifically, we propose to formulate an item as a "sentence" (word sequence) by flattening item key-value attributes described by text so that an item sequence for a user becomes a sequence of sentences. For recommendation, Recformer is trained to understand the "sentence" sequence and retrieve the next "sentence". To encode item sequences, we design a bi-directional Transformer similar to the model Longformer but with different embedding layers for sequential recommendation. For effective representation learning, we propose novel pretraining and finetuning methods which combine language understanding and recommendation tasks. Therefore, Recformer can effectively recommend the next item based on language representations. Extensive experiments conducted on six datasets demonstrate the effectiveness of Recformer for sequential recommendation, especially in low-resource and cold-start settings.
Abstract:Open-world Relation Extraction (OpenRE) has recently garnered significant attention. However, existing approaches tend to oversimplify the problem by assuming that all unlabeled texts belong to novel classes, thereby limiting the practicality of these methods. We argue that the OpenRE setting should be more aligned with the characteristics of real-world data. Specifically, we propose two key improvements: (a) unlabeled data should encompass known and novel classes, including hard-negative instances; and (b) the set of novel classes should represent long-tail relation types. Furthermore, we observe that popular relations such as titles and locations can often be implicitly inferred through specific patterns, while long-tail relations tend to be explicitly expressed in sentences. Motivated by these insights, we present a novel method called KNoRD (Known and Novel Relation Discovery), which effectively classifies explicitly and implicitly expressed relations from known and novel classes within unlabeled data. Experimental evaluations on several Open-world RE benchmarks demonstrate that KNoRD consistently outperforms other existing methods, achieving significant performance gains.
Abstract:Dunhuang murals suffer from fading, breakage, surface brittleness and extensive peeling affected by prolonged environmental erosion. Image inpainting techniques are widely used in the field of digital mural inpainting. Generally speaking, for mural inpainting tasks with large area damage, it is challenging for any image inpainting method. In this paper, we design a multi-stage progressive reasoning network (MPR-Net) containing global to local receptive fields for murals inpainting. This network is capable of recursively inferring the damage boundary and progressively tightening the regional texture constraints. Moreover, to adaptively fuse plentiful information at various scales of murals, a multi-scale feature aggregation module (MFA) is designed to empower the capability to select the significant features. The execution of the model is similar to the process of a mural restorer (i.e., inpainting the structure of the damaged mural globally first and then adding the local texture details further). Our method has been evaluated through both qualitative and quantitative experiments, and the results demonstrate that it outperforms state-of-the-art image inpainting methods.
Abstract:Portrait retouching aims to improve the aesthetic quality of input portrait photos and especially requires human-region priority. The deep learning-based methods largely elevate the retouching efficiency and provide promising retouched results. However, existing portrait retouching methods focus on automatic retouching, which treats all human-regions equally and ignores users' preferences for specific individuals, thus suffering from limited flexibility in interactive scenarios. In this work, we emphasize the importance of users' intents and explore the interactive portrait retouching task. Specifically, we propose a region-aware retouching framework with two branches: an automatic branch and an interactive branch. The automatic branch involves an encoding-decoding process, which searches region candidates and performs automatic region-aware retouching without user guidance. The interactive branch encodes sparse user guidance into a priority condition vector and modulates latent features with a region selection module to further emphasize the user-specified regions. Experimental results show that our interactive branch effectively captures users' intents and generalizes well to unseen scenes with sparse user guidance, while our automatic branch also outperforms the state-of-the-art retouching methods due to improved region-awareness.
Abstract:Remote sensing image segmentation is a specific task of remote sensing image interpretation. A good remote sensing image segmentation algorithm can provide guidance for environmental protection, agricultural production, and urban construction. This paper proposes a new type of UNet image segmentation algorithm based on channel self attention mechanism and residual connection called . In my experiment, the new network model improved mIOU by 2.48% compared to traditional UNet on the FoodNet dataset. The image segmentation algorithm proposed in this article enhances the internal connections between different items in the image, thus achieving better segmentation results for remote sensing images with occlusion.
Abstract:The widespread usage of high-definition screens on edge devices stimulates a strong demand for efficient image restoration algorithms. The way of caching deep learning models in a look-up table (LUT) is recently introduced to respond to this demand. However, the size of a single LUT grows exponentially with the increase of its indexing capacity, which restricts its receptive field and thus the performance. To overcome this intrinsic limitation of the single-LUT solution, we propose a universal method to construct multiple LUTs like a neural network, termed MuLUT. Firstly, we devise novel complementary indexing patterns, as well as a general implementation for arbitrary patterns, to construct multiple LUTs in parallel. Secondly, we propose a re-indexing mechanism to enable hierarchical indexing between cascaded LUTs. Finally, we introduce channel indexing to allow cross-channel interaction, enabling LUTs to process color channels jointly. In these principled ways, the total size of MuLUT is linear to its indexing capacity, yielding a practical solution to obtain superior performance with the enlarged receptive field. We examine the advantage of MuLUT on various image restoration tasks, including super-resolution, demosaicing, denoising, and deblocking. MuLUT achieves a significant improvement over the single-LUT solution, e.g., up to 1.1dB PSNR for super-resolution and up to 2.8dB PSNR for grayscale denoising, while preserving its efficiency, which is 100$\times$ less in energy cost compared with lightweight deep neural networks. Our code and trained models are publicly available at https://github.com/ddlee-cn/MuLUT.
Abstract:Ex vivo MRI of the brain provides remarkable advantages over in vivo MRI for visualizing and characterizing detailed neuroanatomy, and helps to link microscale histology studies with morphometric measurements. However, automated segmentation methods for brain mapping in ex vivo MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high resolution dataset of 37 ex vivo post-mortem human brain tissue specimens scanned on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures. We then segment the four subcortical structures: caudate, putamen, globus pallidus, and thalamus; white matter hyperintensities, and the normal appearing white matter. We show excellent generalizing capabilities across whole brain hemispheres in different specimens, and also on unseen images acquired at different magnetic field strengths and different imaging sequence. We then compute volumetric and localized cortical thickness measurements across key regions, and link them with semi-quantitative neuropathological ratings. Our code, containerized executables, and the processed datasets are publicly available at: https://github.com/Pulkit-Khandelwal/upenn-picsl-brain-ex-vivo.