Alert button
Picture for Jan Kirschke

Jan Kirschke

Alert button

Enhancing Interpretability of Vertebrae Fracture Grading using Human-interpretable Prototypes

Add code
Bookmark button
Alert button
Apr 03, 2024
Poulami Sinhamahapatra, Suprosanna Shit, Anjany Sekuboyina, Malek Husseini, David Schinz, Nicolas Lenhart, Joern Menze, Jan Kirschke, Karsten Roscher, Stephan Guennemann

Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)

Add code
Bookmark button
Alert button
May 20, 2023
Hongwei Bran Li, Syed Muhammad Anwar, Gian Marco Conte, Florian Kofler, Koen van Leemput, Marie Piraud, Ivan Ezhov, Felix Meissen, Maruf Adewole, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W. Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M. Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R. Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva, Meyer Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Thomas Yu, Verena Chung, Timothy Bergquist, James Eddy, Jake Albrecht, Ujjwal Baid, Spyridon Bakas, Marius George Linguraru, Bjoern Menze, Juan Eugenio Iglesias, Benedikt Wiestler

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn)
Viaarxiv icon

The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting

Add code
Bookmark button
Alert button
May 15, 2023
Florian Kofler, Felix Meissen, Felix Steinbauer, Robert Graf, Eva Oswald, Ezequiel de da Rosa, Hongwei Bran Li, Ujjwal Baid, Florian Hoelzl, Oezguen Turgut, Izabela Horvath, Diana Waldmannstetter, Christina Bukas, Maruf Adewole, Syed Muhammad Anwar, Anastasia Janas, Anahita Fathi Kazerooni, Dominic LaBella, Ahmed W Moawad, Keyvan Farahani, James Eddy, Timothy Bergquist, Verena Chung, Russell Takeshi Shinohara, Farouk Dako, Walter Wiggins, Zachary Reitman, Chunhao Wang, Xinyang Liu, Zhifan Jiang, Ariana Familiar, Gian-Marco Conte, Elaine Johanson, Zeke Meier, Christos Davatzikos, John Freymann, Justin Kirby, Michel Bilello, Hassan M Fathallah-Shaykh, Roland Wiest, Jan Kirschke, Rivka R Colen, Aikaterini Kotrotsou, Pamela Lamontagne, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Marc-André Weber, Abhishek Mahajan, Suyash Mohan, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, Errol Colak, Priscila Crivellaro, Andras Jakab, Jake Albrecht, Udunna Anazodo, Mariam Aboian, Juan Eugenio Iglesias, Koen Van Leemput, Spyridon Bakas, Daniel Rueckert, Benedikt Wiestler, Ivan Ezhov, Marie Piraud, Bjoern Menze

Figure 1 for The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting
Viaarxiv icon

Approaching Peak Ground Truth

Add code
Bookmark button
Alert button
Dec 31, 2022
Florian Kofler, Johannes Wahle, Ivan Ezhov, Sophia Wagner, Rami Al-Maskari, Emilia Gryska, Mihail Todorov, Christina Bukas, Felix Meissen, Tingying Peng, Ali Ertürk, Daniel Rueckert, Rolf Heckemann, Jan Kirschke, Claus Zimmer, Benedikt Wiestler, Bjoern Menze, Marie Piraud

Figure 1 for Approaching Peak Ground Truth
Figure 2 for Approaching Peak Ground Truth
Viaarxiv icon

CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN

Add code
Bookmark button
Alert button
Jul 15, 2022
Matan Atad, Vitalii Dmytrenko, Yitong Li, Xinyue Zhang, Matthias Keicher, Jan Kirschke, Bene Wiestler, Ashkan Khakzar, Nassir Navab

Figure 1 for CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN
Figure 2 for CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN
Figure 3 for CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN
Figure 4 for CheXplaining in Style: Counterfactual Explanations for Chest X-rays using StyleGAN
Viaarxiv icon

Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings

Add code
Bookmark button
Alert button
May 17, 2022
Florian Kofler, Ivan Ezhov, Lucas Fidon, Izabela Horvath, Ezequiel de la Rosa, John LaMaster, Hongwei Li, Tom Finck, Suprosanna Shit, Johannes Paetzold, Spyridon Bakas, Marie Piraud, Jan Kirschke, Tom Vercauteren, Claus Zimmer, Benedikt Wiestler, Bjoern Menze

Figure 1 for Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Figure 2 for Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Figure 3 for Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Figure 4 for Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings
Viaarxiv icon

blob loss: instance imbalance aware loss functions for semantic segmentation

Add code
Bookmark button
Alert button
May 17, 2022
Florian Kofler, Suprosanna Shit, Ivan Ezhov, Lucas Fidon, Izabela Horvath, Rami Al-Maskari, Hongwei Li, Harsharan Bhatia, Timo Loehr, Marie Piraud, Ali Erturk, Jan Kirschke, Jan Peeken, Tom Vercauteren, Claus Zimmer, Benedikt Wiestler, Bjoern Menze

Figure 1 for blob loss: instance imbalance aware loss functions for semantic segmentation
Figure 2 for blob loss: instance imbalance aware loss functions for semantic segmentation
Figure 3 for blob loss: instance imbalance aware loss functions for semantic segmentation
Figure 4 for blob loss: instance imbalance aware loss functions for semantic segmentation
Viaarxiv icon

A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images

Add code
Bookmark button
Alert button
Oct 24, 2021
Giles Tetteh, Fernando Navarro, Johannes Paetzold, Jan Kirschke, Claus Zimmer, Bjoern H. Menze

Figure 1 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 2 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 3 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 4 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Viaarxiv icon

Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient

Add code
Bookmark button
Alert button
Mar 10, 2021
Florian Kofler, Ivan Ezhov, Fabian Isensee, Fabian Balsiger, Christoph Berger, Maximilian Koerner, Johannes Paetzold, Hongwei Li, Suprosanna Shit, Richard McKinley, Spyridon Bakas, Claus Zimmer, Donna Ankerst, Jan Kirschke, Benedikt Wiestler, Bjoern H. Menze

Figure 1 for Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Figure 2 for Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Figure 3 for Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Figure 4 for Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient
Viaarxiv icon

Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation

Add code
Bookmark button
Alert button
Aug 29, 2018
Hongwei Li, Jianguo Zhang, Mark Muehlau, Jan Kirschke, Bjoern Menze

Figure 1 for Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation
Figure 2 for Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation
Figure 3 for Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation
Figure 4 for Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation
Viaarxiv icon