Alert button
Picture for Giles Tetteh

Giles Tetteh

Alert button

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany, Department of Informatics, Technical University of Munich, Germany

A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images

Add code
Bookmark button
Alert button
Oct 24, 2021
Giles Tetteh, Fernando Navarro, Johannes Paetzold, Jan Kirschke, Claus Zimmer, Bjoern H. Menze

Figure 1 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 2 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 3 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Figure 4 for A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images
Viaarxiv icon

A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data

Add code
Bookmark button
Alert button
Mar 10, 2021
Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T. Löffler, Amirhossein Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, Thomas Baum, Benedikt Wiestler, Bjoern Menze, Rickmer Braren, Claus Zimmer, Jan S. Kirschke

Figure 1 for A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data
Figure 2 for A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data
Viaarxiv icon

A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images

Add code
Bookmark button
Alert button
Jul 10, 2020
Stefan Gerl, Johannes C. Paetzold, Hailong He, Ivan Ezhov, Suprosanna Shit, Florian Kofler, Amirhossein Bayat, Giles Tetteh, Vasilis Ntziachristos, Bjoern Menze

Figure 1 for A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images
Figure 2 for A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images
Figure 3 for A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images
Figure 4 for A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images
Viaarxiv icon

clDice -- a Topology-Preserving Loss Function for Tubular Structure Segmentation

Add code
Bookmark button
Alert button
Mar 29, 2020
Suprosanna Shit, Johannes C. Paetzold, Anjany Sekuboyina, Andrey Zhylka, Ivan Ezhov, Alexander Unger, Josien P. W. Pluim, Giles Tetteh, Bjoern H. Menze

Figure 1 for clDice -- a Topology-Preserving Loss Function for Tubular Structure Segmentation
Figure 2 for clDice -- a Topology-Preserving Loss Function for Tubular Structure Segmentation
Figure 3 for clDice -- a Topology-Preserving Loss Function for Tubular Structure Segmentation
Figure 4 for clDice -- a Topology-Preserving Loss Function for Tubular Structure Segmentation
Viaarxiv icon

VerSe: A Vertebrae Labelling and Segmentation Benchmark

Add code
Bookmark button
Alert button
Jan 24, 2020
Anjany Sekuboyina, Amirhossein Bayat, Malek E. Husseini, Maximilian Löffler, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Christian Payer, Martin Urschler, Maodong Chen, Dalong Cheng, Nikolas Lessmann, Yujin Hu, Tianfu Wang, Dong Yang, Daguang Xu, Felix Ambellan, Stefan Zachowk, Tao Jiang, Xinjun Ma, Christoph Angerman, Xin Wang, Qingyue Wei, Kevin Brown, Matthias Wolf, Alexandre Kirszenberg, Élodie Puybareauq, Björn H. Menze, Jan S. Kirschke

Figure 1 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 2 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 3 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Figure 4 for VerSe: A Vertebrae Labelling and Segmentation Benchmark
Viaarxiv icon

Direct Estimation of Pharmacokinetic Parameters from DCE-MRI using Deep CNN with Forward Physical Model Loss

Add code
Bookmark button
Alert button
Jun 12, 2018
Cagdas Ulas, Giles Tetteh, Michael J. Thrippleton, Paul A. Armitage, Stephen D. Makin, Joanna M. Wardlaw, Mike E. Davies, Bjoern H. Menze

Figure 1 for Direct Estimation of Pharmacokinetic Parameters from DCE-MRI using Deep CNN with Forward Physical Model Loss
Figure 2 for Direct Estimation of Pharmacokinetic Parameters from DCE-MRI using Deep CNN with Forward Physical Model Loss
Figure 3 for Direct Estimation of Pharmacokinetic Parameters from DCE-MRI using Deep CNN with Forward Physical Model Loss
Figure 4 for Direct Estimation of Pharmacokinetic Parameters from DCE-MRI using Deep CNN with Forward Physical Model Loss
Viaarxiv icon

DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning

Add code
Bookmark button
Alert button
Jun 12, 2018
Cagdas Ulas, Giles Tetteh, Stephan Kaczmarz, Christine Preibisch, Bjoern H. Menze

Figure 1 for DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning
Figure 2 for DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning
Figure 3 for DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning
Figure 4 for DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning
Viaarxiv icon

Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior

Add code
Bookmark button
Alert button
Apr 04, 2018
Anjany Sekuboyina, Markus Rempfler, Jan Kukačka, Giles Tetteh, Alexander Valentinitsch, Jan S. Kirschke, Bjoern H. Menze

Figure 1 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 2 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 3 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Figure 4 for Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior
Viaarxiv icon