Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Claus Zimmer

Claus Zimmer

Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany

A Deep Learning Approach to Predicting Collateral Flow in Stroke Patients Using Radiomic Features from Perfusion Images

Oct 24, 2021
Giles Tetteh, Fernando Navarro, Johannes Paetzold, Jan Kirschke, Claus Zimmer, Bjoern H. Menze

  Access Paper or Ask Questions

A Computed Tomography Vertebral Segmentation Dataset with Anatomical Variations and Multi-Vendor Scanner Data

Mar 10, 2021
Hans Liebl, David Schinz, Anjany Sekuboyina, Luca Malagutti, Maximilian T. Löffler, Amirhossein Bayat, Malek El Husseini, Giles Tetteh, Katharina Grau, Eva Niederreiter, Thomas Baum, Benedikt Wiestler, Bjoern Menze, Rickmer Braren, Claus Zimmer, Jan S. Kirschke

* 18 pages, 2 figures, 2 tables; Hans Liebl, David Schinz equally contributed to this manuscript 

  Access Paper or Ask Questions

Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient

Mar 10, 2021
Florian Kofler, Ivan Ezhov, Fabian Isensee, Fabian Balsiger, Christoph Berger, Maximilian Koerner, Johannes Paetzold, Hongwei Li, Suprosanna Shit, Richard McKinley, Spyridon Bakas, Claus Zimmer, Donna Ankerst, Jan Kirschke, Benedikt Wiestler, Bjoern H. Menze

  Access Paper or Ask Questions

DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes

Mar 25, 2018
Giles Tetteh, Velizar Efremov, Nils D. Forkert, Matthias Schneider, Jan Kirschke, Bruno Weber, Claus Zimmer, Marie Piraud, Bjoern H. Menze

  Access Paper or Ask Questions

Deep-FExt: Deep Feature Extraction for Vessel Segmentation and Centerline Prediction

Apr 12, 2017
Giles Tetteh, Markus Rempfler, Bjoern H. Menze, Claus Zimmer

* Wang Q., Shi Y., Suk HI., Suzuki K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science, vol 10541. Springer, Cham 
* 9 pages 

  Access Paper or Ask Questions