Johns Hopkins University
Abstract:Large language models (LLMs) are rapidly deployed in critical applications, raising urgent needs for robust safety benchmarking. We propose Jailbreak Distillation (JBDistill), a novel benchmark construction framework that "distills" jailbreak attacks into high-quality and easily-updatable safety benchmarks. JBDistill utilizes a small set of development models and existing jailbreak attack algorithms to create a candidate prompt pool, then employs prompt selection algorithms to identify an effective subset of prompts as safety benchmarks. JBDistill addresses challenges in existing safety evaluation: the use of consistent evaluation prompts across models ensures fair comparisons and reproducibility. It requires minimal human effort to rerun the JBDistill pipeline and produce updated benchmarks, alleviating concerns on saturation and contamination. Extensive experiments demonstrate our benchmarks generalize robustly to 13 diverse evaluation models held out from benchmark construction, including proprietary, specialized, and newer-generation LLMs, significantly outperforming existing safety benchmarks in effectiveness while maintaining high separability and diversity. Our framework thus provides an effective, sustainable, and adaptable solution for streamlining safety evaluation.
Abstract:Retrieve-and-rerank is a popular retrieval pipeline because of its ability to make slow but effective rerankers efficient enough at query time by reducing the number of comparisons. Recent works in neural rerankers take advantage of large language models for their capability in reasoning between queries and passages and have achieved state-of-the-art retrieval effectiveness. However, such rerankers are resource-intensive, even after heavy optimization. In this work, we introduce Rank-K, a listwise passage reranking model that leverages the reasoning capability of the reasoning language model at query time that provides test time scalability to serve hard queries. We show that Rank-K improves retrieval effectiveness by 23\% over the RankZephyr, the state-of-the-art listwise reranker, when reranking a BM25 initial ranked list and 19\% when reranking strong retrieval results by SPLADE-v3. Since Rank-K is inherently a multilingual model, we found that it ranks passages based on queries in different languages as effectively as it does in monolingual retrieval.
Abstract:We present a state-of-the-art model for fine-grained probability estimation of propositions conditioned on context. Recent advances in large language models (LLMs) have significantly enhanced their reasoning capabilities, particularly on well-defined tasks with complete information. However, LLMs continue to struggle with making accurate and well-calibrated probabilistic predictions under uncertainty or partial information. While incorporating uncertainty into model predictions often boosts performance, obtaining reliable estimates of that uncertainty remains understudied. In particular, LLM probability estimates tend to be coarse and biased towards more frequent numbers. Through a combination of human and synthetic data creation and assessment, scaling to larger models, and better supervision, we propose a set of strong and precise probability estimation models. We conduct systematic evaluations across tasks that rely on conditional probability estimation and show that our approach consistently outperforms existing fine-tuned and prompting-based methods by a large margin.
Abstract:Tool-using agents that act in the world need to be both useful and safe. Well-calibrated model confidences can be used to weigh the risk versus reward of potential actions, but prior work shows that many models are poorly calibrated. Inspired by interpretability literature exploring the internals of models, we propose a novel class of model-internal confidence estimators (MICE) to better assess confidence when calling tools. MICE first decodes from each intermediate layer of the language model using logitLens and then computes similarity scores between each layer's generation and the final output. These features are fed into a learned probabilistic classifier to assess confidence in the decoded output. On the simulated trial and error (STE) tool-calling dataset using Llama3 models, we find that MICE beats or matches the baselines on smoothed expected calibration error. Using MICE confidences to determine whether to call a tool significantly improves over strong baselines on a new metric, expected tool-calling utility. Further experiments show that MICE is sample-efficient, can generalize zero-shot to unseen APIs, and results in higher tool-calling utility in scenarios with varying risk levels. Our code is open source, available at https://github.com/microsoft/mice_for_cats.
Abstract:The exposure of large language models (LLMs) to copyrighted material during pre-training raises concerns about unintentional copyright infringement post deployment. This has driven the development of "copyright takedown" methods, post-training approaches aimed at preventing models from generating content substantially similar to copyrighted ones. While current mitigation approaches are somewhat effective for average-case risks, we demonstrate that they overlook worst-case copyright risks exhibits by the existence of long, verbatim quotes from copyrighted sources. We propose BloomScrub, a remarkably simple yet highly effective inference-time approach that provides certified copyright takedown. Our method repeatedly interleaves quote detection with rewriting techniques to transform potentially infringing segments. By leveraging efficient data sketches (Bloom filters), our approach enables scalable copyright screening even for large-scale real-world corpora. When quotes beyond a length threshold cannot be removed, the system can abstain from responding, offering certified risk reduction. Experimental results show that BloomScrub reduces infringement risk, preserves utility, and accommodates different levels of enforcement stringency with adaptive abstention. Our results suggest that lightweight, inference-time methods can be surprisingly effective for copyright prevention.
Abstract:Literature review tables are essential for summarizing and comparing collections of scientific papers. We explore the task of generating tables that best fulfill a user's informational needs given a collection of scientific papers. Building on recent work (Newman et al., 2024), we extend prior approaches to address real-world complexities through a combination of LLM-based methods and human annotations. Our contributions focus on three key challenges encountered in real-world use: (i) User prompts are often under-specified; (ii) Retrieved candidate papers frequently contain irrelevant content; and (iii) Task evaluation should move beyond shallow text similarity techniques and instead assess the utility of inferred tables for information-seeking tasks (e.g., comparing papers). To support reproducible evaluation, we introduce ARXIV2TABLE, a more realistic and challenging benchmark for this task, along with a novel approach to improve literature review table generation in real-world scenarios. Our extensive experiments on this benchmark show that both open-weight and proprietary LLMs struggle with the task, highlighting its difficulty and the need for further advancements. Our dataset and code are available at https://github.com/JHU-CLSP/arXiv2Table.
Abstract:Training large, general-purpose language models poses significant challenges. The growing availability of specialized expert models, fine-tuned from pretrained models for specific tasks or domains, offers a promising alternative. Leveraging the potential of these existing expert models in real-world applications requires effective methods to select or merge the models best suited for a given task. This paper introduces SPECTR, an approach for dynamically composing expert models at each time step during inference. Notably, our method requires no additional training and enables flexible, token- and layer-wise model combinations. Our experimental results demonstrate that SPECTR improves routing accuracy over alternative training-free methods, increasing task performance across expert domains.
Abstract:To develop general-purpose collaborative agents, humans need reliable AI systems that can (1) adapt to new domains and (2) transparently reason with uncertainty to allow for verification and correction. Black-box models demonstrate powerful data processing abilities but do not satisfy these criteria due to their opaqueness, domain specificity, and lack of uncertainty awareness. We introduce Bonsai, a compositional and probabilistic reasoning system that generates adaptable inference trees by retrieving relevant grounding evidence and using it to compute likelihoods of sub-claims derived from broader natural language inferences. Bonsai's reasoning power is tunable at test-time via evidence scaling and it demonstrates reliable handling of varied domains including transcripts, photographs, videos, audio, and databases. Question-answering and human alignment experiments demonstrate that Bonsai matches the performance of domain-specific black-box methods while generating interpretable, grounded, and uncertainty-aware reasoning traces.
Abstract:We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
Abstract:A core part of scientific peer review involves providing expert critiques that directly assess the scientific claims a paper makes. While it is now possible to automatically generate plausible (if generic) reviews, ensuring that these reviews are sound and grounded in the papers' claims remains challenging. To facilitate LLM benchmarking on these challenges, we introduce CLAIMCHECK, an annotated dataset of NeurIPS 2023 and 2024 submissions and reviews mined from OpenReview. CLAIMCHECK is richly annotated by ML experts for weakness statements in the reviews and the paper claims that they dispute, as well as fine-grained labels of the validity, objectivity, and type of the identified weaknesses. We benchmark several LLMs on three claim-centric tasks supported by CLAIMCHECK, requiring models to (1) associate weaknesses with the claims they dispute, (2) predict fine-grained labels for weaknesses and rewrite the weaknesses to enhance their specificity, and (3) verify a paper's claims with grounded reasoning. Our experiments reveal that cutting-edge LLMs, while capable of predicting weakness labels in (2), continue to underperform relative to human experts on all other tasks.