Alert button
Picture for Benjamin Van Durme

Benjamin Van Durme

Alert button

Interpreting User Requests in the Context of Natural Language Standing Instructions

Nov 16, 2023
Nikita Moghe, Patrick Xia, Jacob Andreas, Jason Eisner, Benjamin Van Durme, Harsh Jhamtani

Users of natural language interfaces, generally powered by Large Language Models (LLMs),often must repeat their preferences each time they make a similar request. To alleviate this, we propose including some of a user's preferences and instructions in natural language -- collectively termed standing instructions -- as additional context for such interfaces. For example, when a user states I'm hungry, their previously expressed preference for Persian food will be automatically added to the LLM prompt, so as to influence the search for relevant restaurants. We develop NLSI, a language-to-program dataset consisting of over 2.4K dialogues spanning 17 domains, where each dialogue is paired with a user profile (a set of users specific standing instructions) and corresponding structured representations (API calls). A key challenge in NLSI is to identify which subset of the standing instructions is applicable to a given dialogue. NLSI contains diverse phenomena, from simple preferences to interdependent instructions such as triggering a hotel search whenever the user is booking tickets to an event. We conduct experiments on NLSI using prompting with large language models and various retrieval approaches, achieving a maximum of 44.7% exact match on API prediction. Our results demonstrate the challenges in identifying the relevant standing instructions and their interpretation into API calls.

Viaarxiv icon

BLT: Can Large Language Models Handle Basic Legal Text?

Nov 16, 2023
Andrew Blair-Stanek, Nils Holzenberger, Benjamin Van Durme

We find that the best publicly available LLMs like GPT-4 and PaLM 2 currently perform poorly at basic text handling required of lawyers or paralegals, such as looking up the text at a line of a witness deposition or at a subsection of a contract. We introduce a benchmark to quantify this poor performance, which casts into doubt LLMs' current reliability as-is for legal practice. Finetuning for these tasks brings an older LLM to near-perfect performance on our test set and also raises performance on a related legal task. This stark result highlights the need for more domain expertise in LLM training.

Viaarxiv icon

Toucan: Token-Aware Character Level Language Modeling

Nov 15, 2023
William Fleshman, Benjamin Van Durme

Character-level language models obviate the need for separately trained tokenizers, but efficiency suffers from longer sequence lengths. Learning to combine character representations into tokens has made training these models more efficient, but they still require decoding characters individually. We propose Toucan, an augmentation to character-level models to make them "token-aware". Comparing our method to prior work, we demonstrate significant speed-ups in character generation without a loss in language modeling performance. We then explore differences between our learned dynamic tokenization of character sequences with popular fixed vocabulary solutions such as Byte-Pair Encoding and WordPiece, finding our approach leads to a greater amount of longer sequences tokenized as single items. Our project and code are available at

Viaarxiv icon

FAMuS: Frames Across Multiple Sources

Nov 09, 2023
Siddharth Vashishtha, Alexander Martin, William Gantt, Benjamin Van Durme, Aaron Steven White

Understanding event descriptions is a central aspect of language processing, but current approaches focus overwhelmingly on single sentences or documents. Aggregating information about an event \emph{across documents} can offer a much richer understanding. To this end, we present FAMuS, a new corpus of Wikipedia passages that \emph{report} on some event, paired with underlying, genre-diverse (non-Wikipedia) \emph{source} articles for the same event. Events and (cross-sentence) arguments in both report and source are annotated against FrameNet, providing broad coverage of different event types. We present results on two key event understanding tasks enabled by FAMuS: \emph{source validation} -- determining whether a document is a valid source for a target report event -- and \emph{cross-document argument extraction} -- full-document argument extraction for a target event from both its report and the correct source article. We release both FAMuS and our models to support further research.

Viaarxiv icon

Narrowing the Gap between Zero- and Few-shot Machine Translation by Matching Styles

Nov 04, 2023
Weiting Tan, Haoran Xu, Lingfeng Shen, Shuyue Stella Li, Kenton Murray, Philipp Koehn, Benjamin Van Durme, Yunmo Chen

Large language models trained primarily in a monolingual setting have demonstrated their ability to generalize to machine translation using zero- and few-shot examples with in-context learning. However, even though zero-shot translations are relatively good, there remains a discernible gap comparing their performance with the few-shot setting. In this paper, we investigate the factors contributing to this gap and find that this gap can largely be closed (for about 70%) by matching the writing styles of the target corpus. Additionally, we explore potential approaches to enhance zero-shot baselines without the need for parallel demonstration examples, providing valuable insights into how these methods contribute to improving translation metrics.

Viaarxiv icon

InstructExcel: A Benchmark for Natural Language Instruction in Excel

Oct 23, 2023
Justin Payan, Swaroop Mishra, Mukul Singh, Carina Negreanu, Christian Poelitz, Chitta Baral, Subhro Roy, Rasika Chakravarthy, Benjamin Van Durme, Elnaz Nouri

Figure 1 for InstructExcel: A Benchmark for Natural Language Instruction in Excel
Figure 2 for InstructExcel: A Benchmark for Natural Language Instruction in Excel
Figure 3 for InstructExcel: A Benchmark for Natural Language Instruction in Excel
Figure 4 for InstructExcel: A Benchmark for Natural Language Instruction in Excel

With the evolution of Large Language Models (LLMs) we can solve increasingly more complex NLP tasks across various domains, including spreadsheets. This work investigates whether LLMs can generate code (Excel OfficeScripts, a TypeScript API for executing many tasks in Excel) that solves Excel specific tasks provided via natural language user instructions. To do so we introduce a new large-scale benchmark, InstructExcel, created by leveraging the 'Automate' feature in Excel to automatically generate OfficeScripts from users' actions. Our benchmark includes over 10k samples covering 170+ Excel operations across 2,000 publicly available Excel spreadsheets. Experiments across various zero-shot and few-shot settings show that InstructExcel is a hard benchmark for state of the art models like GPT-4. We observe that (1) using GPT-4 over GPT-3.5, (2) providing more in-context examples, and (3) dynamic prompting can help improve performance on this benchmark.

* Findings of EMNLP 2023, 18 pages 
Viaarxiv icon

A Unified View of Evaluation Metrics for Structured Prediction

Oct 20, 2023
Yunmo Chen, William Gantt, Tongfei Chen, Aaron Steven White, Benjamin Van Durme

We present a conceptual framework that unifies a variety of evaluation metrics for different structured prediction tasks (e.g. event and relation extraction, syntactic and semantic parsing). Our framework requires representing the outputs of these tasks as objects of certain data types, and derives metrics through matching of common substructures, possibly followed by normalization. We demonstrate how commonly used metrics for a number of tasks can be succinctly expressed by this framework, and show that new metrics can be naturally derived in a bottom-up way based on an output structure. We release a library that enables this derivation to create new metrics. Finally, we consider how specific characteristics of tasks motivate metric design decisions, and suggest possible modifications to existing metrics in line with those motivations.

* Accepted at EMNLP2023 Main Track 
Viaarxiv icon

SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation

Oct 06, 2023
Abe Bohan Hou, Jingyu Zhang, Tianxing He, Yichen Wang, Yung-Sung Chuang, Hongwei Wang, Lingfeng Shen, Benjamin Van Durme, Daniel Khashabi, Yulia Tsvetkov

Figure 1 for SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation
Figure 2 for SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation
Figure 3 for SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation
Figure 4 for SemStamp: A Semantic Watermark with Paraphrastic Robustness for Text Generation

Existing watermarking algorithms are vulnerable to paraphrase attacks because of their token-level design. To address this issue, we propose SemStamp, a robust sentence-level semantic watermarking algorithm based on locality-sensitive hashing (LSH), which partitions the semantic space of sentences. The algorithm encodes and LSH-hashes a candidate sentence generated by an LLM, and conducts sentence-level rejection sampling until the sampled sentence falls in watermarked partitions in the semantic embedding space. A margin-based constraint is used to enhance its robustness. To show the advantages of our algorithm, we propose a "bigram" paraphrase attack using the paraphrase that has the fewest bigram overlaps with the original sentence. This attack is shown to be effective against the existing token-level watermarking method. Experimental results show that our novel semantic watermark algorithm is not only more robust than the previous state-of-the-art method on both common and bigram paraphrase attacks, but also is better at preserving the quality of generation.

Viaarxiv icon

Nugget 2D: Dynamic Contextual Compression for Scaling Decoder-only Language Models

Oct 03, 2023
Guanghui Qin, Corby Rosset, Ethan C. Chau, Nikhil Rao, Benjamin Van Durme

Standard Transformer-based language models (LMs) scale poorly to long contexts. We propose a solution based on dynamic contextual compression, which extends the Nugget approach of Qin & Van Durme (2023) from BERT-like frameworks to decoder-only LMs. Our method models history as compressed "nuggets" which are trained to allow for reconstruction, and it can be initialized with off-the-shelf models such as LLaMA. We demonstrate through experiments in language modeling, question answering, and summarization that Nugget2D retains capabilities in these tasks, while drastically reducing the overhead during decoding in terms of time and space. For example, in the experiments of autoencoding, Nugget2D can shrink context at a 20x compression ratio with a BLEU score of 98% for reconstruction, achieving nearly lossless encoding.

* Preprint. 15 pages and 7 figures 
Viaarxiv icon

Nugget: Neural Agglomerative Embeddings of Text

Oct 03, 2023
Guanghui Qin, Benjamin Van Durme

Figure 1 for Nugget: Neural Agglomerative Embeddings of Text
Figure 2 for Nugget: Neural Agglomerative Embeddings of Text
Figure 3 for Nugget: Neural Agglomerative Embeddings of Text
Figure 4 for Nugget: Neural Agglomerative Embeddings of Text

Embedding text sequences is a widespread requirement in modern language understanding. Existing approaches focus largely on constant-size representations. This is problematic, as the amount of information contained in text often varies with the length of the input. We propose a solution called Nugget, which encodes language into a representation based on a dynamically selected subset of input tokens. These nuggets are learned through tasks like autoencoding and machine translation, and intuitively segment language into meaningful units. We demonstrate Nugget outperforms related approaches in tasks involving semantic comparison. Finally, we illustrate these compact units allow for expanding the contextual window of a language model (LM), suggesting new future LMs that can condition on significantly larger amounts of content.

* ICML 2023  
* Appeared at ICML 2023 
Viaarxiv icon