Abstract:Deep learning models have shown promising performance in the field of diabetic retinopathy (DR) staging. However, collaboratively training a DR staging model across multiple institutions remains a challenge due to non-iid data, client reliability, and confidence evaluation of the prediction. To address these issues, we propose a novel federated uncertainty-aware aggregation paradigm (FedUAA), which considers the reliability of each client and produces a confidence estimation for the DR staging. In our FedUAA, an aggregated encoder is shared by all clients for learning a global representation of fundus images, while a novel temperature-warmed uncertainty head (TWEU) is utilized for each client for local personalized staging criteria. Our TWEU employs an evidential deep layer to produce the uncertainty score with the DR staging results for client reliability evaluation. Furthermore, we developed a novel uncertainty-aware weighting module (UAW) to dynamically adjust the weights of model aggregation based on the uncertainty score distribution of each client. In our experiments, we collect five publicly available datasets from different institutions to conduct a dataset for federated DR staging to satisfy the real non-iid condition. The experimental results demonstrate that our FedUAA achieves better DR staging performance with higher reliability compared to other federated learning methods. Our proposed FedUAA paradigm effectively addresses the challenges of collaboratively training DR staging models across multiple institutions, and provides a robust and reliable solution for the deployment of DR diagnosis models in real-world clinical scenarios.
Abstract:Diffusion Probabilistic Models have recently shown remarkable performance in generative image modeling, attracting significant attention in the computer vision community. However, while a substantial amount of diffusion-based research has focused on generative tasks, few studies have applied diffusion models to general medical image classification. In this paper, we propose the first diffusion-based model (named DiffMIC) to address general medical image classification by eliminating unexpected noise and perturbations in medical images and robustly capturing semantic representation. To achieve this goal, we devise a dual conditional guidance strategy that conditions each diffusion step with multiple granularities to improve step-wise regional attention. Furthermore, we propose learning the mutual information in each granularity by enforcing Maximum-Mean Discrepancy regularization during the diffusion forward process. We evaluate the effectiveness of our DiffMIC on three medical classification tasks with different image modalities, including placental maturity grading on ultrasound images, skin lesion classification using dermatoscopic images, and diabetic retinopathy grading using fundus images. Our experimental results demonstrate that DiffMIC outperforms state-of-the-art methods by a significant margin, indicating the universality and effectiveness of the proposed model. Our code will be publicly available at https://github.com/scott-yjyang/DiffMIC.
Abstract:As scientific and technological advancements result from human intellectual labor and computational costs, protecting model intellectual property (IP) has become increasingly important to encourage model creators and owners. Model IP protection involves preventing the use of well-trained models on unauthorized domains. To address this issue, we propose a novel approach called Compact Un-Transferable Isolation Domain (CUTI-domain), which acts as a barrier to block illegal transfers from authorized to unauthorized domains. Specifically, CUTI-domain blocks cross-domain transfers by highlighting the private style features of the authorized domain, leading to recognition failure on unauthorized domains with irrelevant private style features. Moreover, we provide two solutions for using CUTI-domain depending on whether the unauthorized domain is known or not: target-specified CUTI-domain and target-free CUTI-domain. Our comprehensive experimental results on four digit datasets, CIFAR10 & STL10, and VisDA-2017 dataset demonstrate that CUTI-domain can be easily implemented as a plug-and-play module with different backbones, providing an efficient solution for model IP protection.
Abstract:The collection of medical image datasets is a demanding and laborious process that requires significant resources. Furthermore, these medical datasets may contain personally identifiable information, necessitating measures to ensure that unauthorized access is prevented. Failure to do so could violate the intellectual property rights of the dataset owner and potentially compromise the privacy of patients. As a result, safeguarding medical datasets and preventing unauthorized usage by AI diagnostic models is a pressing challenge. To address this challenge, we propose a novel visible adversarial watermarking method for medical image copyright protection, called MedLocker. Our approach involves continuously optimizing the position and transparency of a watermark logo, which reduces the performance of the target model, leading to incorrect predictions. Importantly, we ensure that our method minimizes the impact on clinical visualization by constraining watermark positions using semantical masks (WSM), which are bounding boxes of lesion regions based on semantic segmentation. To ensure the transferability of the watermark across different models, we verify the cross-model transferability of the watermark generated on a single model. Additionally, we generate a unique watermark parameter list each time, which can be used as a certification to verify the authorization. We evaluate the performance of MedLocker on various mainstream backbones and validate the feasibility of adversarial watermarking for copyright protection on two widely-used diabetic retinopathy detection datasets. Our results demonstrate that MedLocker can effectively protect the copyright of medical datasets and prevent unauthorized users from analyzing medical images with AI diagnostic models.
Abstract:In recent years, Denoising Diffusion Models have demonstrated remarkable success in generating semantically valuable pixel-wise representations for image generative modeling. In this study, we propose a novel end-to-end framework, called Diff-UNet, for medical volumetric segmentation. Our approach integrates the diffusion model into a standard U-shaped architecture to extract semantic information from the input volume effectively, resulting in excellent pixel-level representations for medical volumetric segmentation. To enhance the robustness of the diffusion model's prediction results, we also introduce a Step-Uncertainty based Fusion (SUF) module during inference to combine the outputs of the diffusion models at each step. We evaluate our method on three datasets, including multimodal brain tumors in MRI, liver tumors, and multi-organ CT volumes, and demonstrate that Diff-UNet outperforms other state-of-the-art methods significantly. Our experimental results also indicate the universality and effectiveness of the proposed model. The proposed framework has the potential to facilitate the accurate diagnosis and treatment of medical conditions by enabling more precise segmentation of anatomical structures. The codes of Diff-UNet are available at https://github.com/ge-xing/Diff-UNet
Abstract:Multimodality eye disease screening is crucial in ophthalmology as it integrates information from diverse sources to complement their respective performances. However, the existing methods are weak in assessing the reliability of each unimodality, and directly fusing an unreliable modality may cause screening errors. To address this issue, we introduce a novel multimodality evidential fusion pipeline for eye disease screening, EyeMoS$t$, which provides a measure of confidence for unimodality and elegantly integrates the multimodality information from a multi-distribution fusion perspective. Specifically, our model estimates both local uncertainty for unimodality and global uncertainty for the fusion modality to produce reliable classification results. More importantly, the proposed mixture of Student's $t$ distributions adaptively integrates different modalities to endow the model with heavy-tailed properties, increasing robustness and reliability. Our experimental findings on both public and in-house datasets show that our model is more reliable than current methods. Additionally, EyeMos$t$ has the potential ability to serve as a data quality discriminator, enabling reliable decision-making for multimodality eye disease screening.
Abstract:Shadow removal in a single image has received increasing attention in recent years. However, removing shadows over dynamic scenes remains largely under-explored. In this paper, we propose the first data-driven video shadow removal model, termed PSTNet, by exploiting three essential characteristics of video shadows, i.e., physical property, spatio relation, and temporal coherence. Specifically, a dedicated physical branch was established to conduct local illumination estimation, which is more applicable for scenes with complex lighting and textures, and then enhance the physical features via a mask-guided attention strategy. Then, we develop a progressive aggregation module to enhance the spatio and temporal characteristics of features maps, and effectively integrate the three kinds of features. Furthermore, to tackle the lack of datasets of paired shadow videos, we synthesize a dataset (SVSRD-85) with aid of the popular game GTAV by controlling the switch of the shadow renderer. Experiments against 9 state-of-the-art models, including image shadow removers and image/video restoration methods, show that our method improves the best SOTA in terms of RMSE error for the shadow area by 14.7. In addition, we develop a lightweight model adaptation strategy to make our synthetic-driven model effective in real world scenes. The visual comparison on the public SBU-TimeLapse dataset verifies the generalization ability of our model in real scenes.
Abstract:Medical phrase grounding (MPG) aims to locate the most relevant region in a medical image, given a phrase query describing certain medical findings, which is an important task for medical image analysis and radiological diagnosis. However, existing visual grounding methods rely on general visual features for identifying objects in natural images and are not capable of capturing the subtle and specialized features of medical findings, leading to sub-optimal performance in MPG. In this paper, we propose MedRPG, an end-to-end approach for MPG. MedRPG is built on a lightweight vision-language transformer encoder and directly predicts the box coordinates of mentioned medical findings, which can be trained with limited medical data, making it a valuable tool in medical image analysis. To enable MedRPG to locate nuanced medical findings with better region-phrase correspondences, we further propose Tri-attention Context contrastive alignment (TaCo). TaCo seeks context alignment to pull both the features and attention outputs of relevant region-phrase pairs close together while pushing those of irrelevant regions far away. This ensures that the final box prediction depends more on its finding-specific regions and phrases. Experimental results on three MPG datasets demonstrate that our MedRPG outperforms state-of-the-art visual grounding approaches by a large margin. Additionally, the proposed TaCo strategy is effective in enhancing finding localization ability and reducing spurious region-phrase correlations.
Abstract:Deep learning based image enhancement models have largely improved the readability of fundus images in order to decrease the uncertainty of clinical observations and the risk of misdiagnosis. However, due to the difficulty of acquiring paired real fundus images at different qualities, most existing methods have to adopt synthetic image pairs as training data. The domain shift between the synthetic and the real images inevitably hinders the generalization of such models on clinical data. In this work, we propose an end-to-end optimized teacher-student framework to simultaneously conduct image enhancement and domain adaptation. The student network uses synthetic pairs for supervised enhancement, and regularizes the enhancement model to reduce domain-shift by enforcing teacher-student prediction consistency on the real fundus images without relying on enhanced ground-truth. Moreover, we also propose a novel multi-stage multi-attention guided enhancement network (MAGE-Net) as the backbones of our teacher and student network. Our MAGE-Net utilizes multi-stage enhancement module and retinal structure preservation module to progressively integrate the multi-scale features and simultaneously preserve the retinal structures for better fundus image quality enhancement. Comprehensive experiments on both real and synthetic datasets demonstrate that our framework outperforms the baseline approaches. Moreover, our method also benefits the downstream clinical tasks.
Abstract:The use of AI systems in healthcare for the early screening of diseases is of great clinical importance. Deep learning has shown great promise in medical imaging, but the reliability and trustworthiness of AI systems limit their deployment in real clinical scenes, where patient safety is at stake. Uncertainty estimation plays a pivotal role in producing a confidence evaluation along with the prediction of the deep model. This is particularly important in medical imaging, where the uncertainty in the model's predictions can be used to identify areas of concern or to provide additional information to the clinician. In this paper, we review the various types of uncertainty in deep learning, including aleatoric uncertainty, epistemic uncertainty, and out-of-distribution uncertainty, and we discuss how they can be estimated in medical imaging. We also review recent advances in deep learning models that incorporate uncertainty estimation in medical imaging. Finally, we discuss the challenges and future directions in uncertainty estimation in deep learning for medical imaging. We hope this review will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of uncertainty estimation models in medical imaging.