Abstract:Creating and customizing a 3D clothed avatar from textual descriptions is a critical and challenging task. Traditional methods often treat the human body and clothing as inseparable, limiting users' ability to freely mix and match garments. In response to this limitation, we present LAyered Gaussian Avatar (LAGA), a carefully designed framework enabling the creation of high-fidelity decomposable avatars with diverse garments. By decoupling garments from avatar, our framework empowers users to conviniently edit avatars at the garment level. Our approach begins by modeling the avatar using a set of Gaussian points organized in a layered structure, where each layer corresponds to a specific garment or the human body itself. To generate high-quality garments for each layer, we introduce a coarse-to-fine strategy for diverse garment generation and a novel dual-SDS loss function to maintain coherence between the generated garments and avatar components, including the human body and other garments. Moreover, we introduce three regularization losses to guide the movement of Gaussians for garment transfer, allowing garments to be freely transferred to various avatars. Extensive experimentation demonstrates that our approach surpasses existing methods in the generation of 3D clothed humans.
Abstract:Object pose estimation is a fundamental computer vision problem with broad applications in augmented reality and robotics. Over the past decade, deep learning models, due to their superior accuracy and robustness, have increasingly supplanted conventional algorithms reliant on engineered point pair features. Nevertheless, several challenges persist in contemporary methods, including their dependency on labeled training data, model compactness, robustness under challenging conditions, and their ability to generalize to novel unseen objects. A recent survey discussing the progress made on different aspects of this area, outstanding challenges, and promising future directions, is missing. To fill this gap, we discuss the recent advances in deep learning-based object pose estimation, covering all three formulations of the problem, i.e., instance-level, category-level, and unseen object pose estimation. Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks, providing readers with a holistic understanding of this field. Additionally, it discusses training paradigms of different domains, inference modes, application areas, evaluation metrics, and benchmark datasets, as well as reports the performance of current state-of-the-art methods on these benchmarks, thereby facilitating readers in selecting the most suitable method for their application. Finally, the survey identifies key challenges, reviews prevailing trends along with their pros and cons, and identifies promising directions for future research. We also keep tracing the latest works at https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation.
Abstract:Sign Language Translation (SLT) is a challenging task that aims to translate sign videos into spoken language. Inspired by the strong translation capabilities of large language models (LLMs) that are trained on extensive multilingual text corpora, we aim to harness off-the-shelf LLMs to handle SLT. In this paper, we regularize the sign videos to embody linguistic characteristics of spoken language, and propose a novel SignLLM framework to transform sign videos into a language-like representation for improved readability by off-the-shelf LLMs. SignLLM comprises two key modules: (1) The Vector-Quantized Visual Sign module converts sign videos into a sequence of discrete character-level sign tokens, and (2) the Codebook Reconstruction and Alignment module converts these character-level tokens into word-level sign representations using an optimal transport formulation. A sign-text alignment loss further bridges the gap between sign and text tokens, enhancing semantic compatibility. We achieve state-of-the-art gloss-free results on two widely-used SLT benchmarks.
Abstract:Action detection aims to localize the starting and ending points of action instances in untrimmed videos, and predict the classes of those instances. In this paper, we make the observation that the outputs of the action detection task can be formulated as images. Thus, from a novel perspective, we tackle action detection via a three-image generation process to generate starting point, ending point and action-class predictions as images via our proposed Action Detection Image Diffusion (ADI-Diff) framework. Furthermore, since our images differ from natural images and exhibit special properties, we further explore a Discrete Action-Detection Diffusion Process and a Row-Column Transformer design to better handle their processing. Our ADI-Diff framework achieves state-of-the-art results on two widely-used datasets.
Abstract:Class activation maps (CAMs) are commonly employed in weakly supervised semantic segmentation (WSSS) to produce pseudo-labels. Due to incomplete or excessive class activation, existing studies often resort to offline CAM refinement, introducing additional stages or proposing offline modules. This can cause optimization difficulties for single-stage methods and limit generalizability. In this study, we aim to reduce the observed CAM inconsistency and error to mitigate reliance on refinement processes. We propose an end-to-end WSSS model incorporating guided CAMs, wherein our segmentation model is trained while concurrently optimizing CAMs online. Our method, Co-training with Swapping Assignments (CoSA), leverages a dual-stream framework, where one sub-network learns from the swapped assignments generated by the other. We introduce three techniques: i) soft perplexity-based regularization to penalize uncertain regions; ii) a threshold-searching approach to dynamically revise the confidence threshold; and iii) contrastive separation to address the coexistence problem. CoSA demonstrates exceptional performance, achieving mIoU of 76.2\% and 51.0\% on VOC and COCO validation datasets, respectively, surpassing existing baselines by a substantial margin. Notably, CoSA is the first single-stage approach to outperform all existing multi-stage methods including those with additional supervision. Code is avilable at \url{https://github.com/youshyee/CoSA}.
Abstract:CycleGAN has been proven to be an advanced approach for unsupervised image restoration. This framework consists of two generators: a denoising one for inference and an auxiliary one for modeling noise to fulfill cycle-consistency constraints. However, when applied to the infrared destriping task, it becomes challenging for the vanilla auxiliary generator to consistently produce vertical noise under unsupervised constraints. This poses a threat to the effectiveness of the cycle-consistency loss, leading to stripe noise residual in the denoised image. To address the above issue, we present a novel framework for single-frame infrared image destriping, named DestripeCycleGAN. In this model, the conventional auxiliary generator is replaced with a priori stripe generation model (SGM) to introduce vertical stripe noise in the clean data, and the gradient map is employed to re-establish cycle-consistency. Meanwhile, a Haar wavelet background guidance module (HBGM) has been designed to minimize the divergence of background details between the different domains. To preserve vertical edges, a multi-level wavelet U-Net (MWUNet) is proposed as the denoising generator, which utilizes the Haar wavelet transform as the sampler to decline directional information loss. Moreover, it incorporates the group fusion block (GFB) into skip connections to fuse the multi-scale features and build the context of long-distance dependencies. Extensive experiments on real and synthetic data demonstrate that our DestripeCycleGAN surpasses the state-of-the-art methods in terms of visual quality and quantitative evaluation. Our code will be made public at https://github.com/0wuji/DestripeCycleGAN.
Abstract:Reasoning over sports videos for question answering is an important task with numerous applications, such as player training and information retrieval. However, this task has not been explored due to the lack of relevant datasets and the challenging nature it presents. Most datasets for video question answering (VideoQA) focus mainly on general and coarse-grained understanding of daily-life videos, which is not applicable to sports scenarios requiring professional action understanding and fine-grained motion analysis. In this paper, we introduce the first dataset, named Sports-QA, specifically designed for the sports VideoQA task. The Sports-QA dataset includes various types of questions, such as descriptions, chronologies, causalities, and counterfactual conditions, covering multiple sports. Furthermore, to address the characteristics of the sports VideoQA task, we propose a new Auto-Focus Transformer (AFT) capable of automatically focusing on particular scales of temporal information for question answering. We conduct extensive experiments on Sports-QA, including baseline studies and the evaluation of different methods. The results demonstrate that our AFT achieves state-of-the-art performance.
Abstract:We present 3D Points Splatting Hand Reconstruction (3D-PSHR), a real-time and photo-realistic hand reconstruction approach. We propose a self-adaptive canonical points upsampling strategy to achieve high-resolution hand geometry representation. This is followed by a self-adaptive deformation that deforms the hand from the canonical space to the target pose, adapting to the dynamic changing of canonical points which, in contrast to the common practice of subdividing the MANO model, offers greater flexibility and results in improved geometry fitting. To model texture, we disentangle the appearance color into the intrinsic albedo and pose-aware shading, which are learned through a Context-Attention module. Moreover, our approach allows the geometric and the appearance models to be trained simultaneously in an end-to-end manner. We demonstrate that our method is capable of producing animatable, photorealistic and relightable hand reconstructions using multiple datasets, including monocular videos captured with handheld smartphones and large-scale multi-view videos featuring various hand poses. We also demonstrate that our approach achieves real-time rendering speeds while simultaneously maintaining superior performance compared to existing state-of-the-art methods.
Abstract:Recovering a 3D human mesh from a single RGB image is a challenging task due to depth ambiguity and self-occlusion, resulting in a high degree of uncertainty. Meanwhile, diffusion models have recently seen much success in generating high-quality outputs by progressively denoising noisy inputs. Inspired by their capability, we explore a diffusion-based approach for human mesh recovery, and propose a Human Mesh Diffusion (HMDiff) framework which frames mesh recovery as a reverse diffusion process. We also propose a Distribution Alignment Technique (DAT) that infuses prior distribution information into the mesh distribution diffusion process, and provides useful prior knowledge to facilitate the mesh recovery task. Our method achieves state-of-the-art performance on three widely used datasets. Project page: https://gongjia0208.github.io/HMDiff/.
Abstract:AI-generated content (AIGC) methods aim to produce text, images, videos, 3D assets, and other media using AI algorithms. Due to its wide range of applications and the demonstrated potential of recent works, AIGC developments have been attracting lots of attention recently, and AIGC methods have been developed for various data modalities, such as image, video, text, 3D shape (as voxels, point clouds, meshes, and neural implicit fields), 3D scene, 3D human avatar (body and head), 3D motion, and audio -- each presenting different characteristics and challenges. Furthermore, there have also been many significant developments in cross-modality AIGC methods, where generative methods can receive conditioning input in one modality and produce outputs in another. Examples include going from various modalities to image, video, 3D shape, 3D scene, 3D avatar (body and head), 3D motion (skeleton and avatar), and audio modalities. In this paper, we provide a comprehensive review of AIGC methods across different data modalities, including both single-modality and cross-modality methods, highlighting the various challenges, representative works, and recent technical directions in each setting. We also survey the representative datasets throughout the modalities, and present comparative results for various modalities. Moreover, we also discuss the challenges and potential future research directions.