Abstract:In recent years, deep neural networks (DNNs) have shown competitive results in many fields. Despite this success, they often suffer from poor calibration, especially in safety-critical scenarios such as autonomous driving and healthcare, where unreliable confidence estimates can lead to serious consequences. Recent studies have focused on improving calibration by modifying the classifier, yet such efforts remain limited. Moreover, most existing approaches overlook calibration errors caused by underconfidence, which can be equally detrimental. To address these challenges, we propose MaC-Cal, a novel mask-based classifier calibration method that leverages stochastic sparsity to enhance the alignment between confidence and accuracy. MaC-Cal adopts a two-stage training scheme with adaptive sparsity, dynamically adjusting mask retention rates based on the deviation between confidence and accuracy. Extensive experiments show that MaC-Cal achieves superior calibration performance and robustness under data corruption, offering a practical and effective solution for reliable confidence estimation in DNNs.
Abstract:In recent years, deep neural networks (DNNs) have demonstrated state-of-the-art performance across various domains. However, despite their success, they often face calibration issues, particularly in safety-critical applications such as autonomous driving and healthcare, where unreliable predictions can have serious consequences. Recent research has started to improve model calibration from the view of the classifier. However, the exploration of designing the classifier to solve the model calibration problem is insufficient. Let alone most of the existing methods ignore the calibration errors arising from underconfidence. In this work, we propose a novel method by balancing learnable and ETF classifiers to solve the overconfidence or underconfidence problem for model Calibration named BalCAL. By introducing a confidence-tunable module and a dynamic adjustment method, we ensure better alignment between model confidence and its true accuracy. Extensive experimental validation shows that ours significantly improves model calibration performance while maintaining high predictive accuracy, outperforming existing techniques. This provides a novel solution to the calibration challenges commonly encountered in deep learning.