Abstract:Recently, large language models (LLMs) have shown remarkable reasoning capabilities via large-scale reinforcement learning (RL). However, leveraging the RL algorithm to empower effective multi-tool collaborative reasoning in LLMs remains an open challenge. In this paper, we introduce Tool-Star, an RL-based framework designed to empower LLMs to autonomously invoke multiple external tools during stepwise reasoning. Tool-Star integrates six types of tools and incorporates systematic designs in both data synthesis and training. To address the scarcity of tool-use data, we propose a general tool-integrated reasoning data synthesis pipeline, which combines tool-integrated prompting with hint-based sampling to automatically and scalably generate tool-use trajectories. A subsequent quality normalization and difficulty-aware classification process filters out low-quality samples and organizes the dataset from easy to hard. Furthermore, we propose a two-stage training framework to enhance multi-tool collaborative reasoning by: (1) cold-start fine-tuning, which guides LLMs to explore reasoning patterns via tool-invocation feedback; and (2) a multi-tool self-critic RL algorithm with hierarchical reward design, which reinforces reward understanding and promotes effective tool collaboration. Experimental analyses on over 10 challenging reasoning benchmarks highlight the effectiveness and efficiency of Tool-Star. The code is available at https://github.com/dongguanting/Tool-Star.
Abstract:Existing studies have optimized retrieval-augmented generation (RAG) across various sub-tasks, such as query understanding and retrieval refinement, but integrating these optimizations into a unified framework remains challenging. To tackle this problem, this work proposes RoleRAG, a unified RAG framework that achieves efficient multi-task processing through role-specific token optimization. RoleRAG comprises six modules, each handling a specific sub-task within the RAG process. Additionally, we introduce a query graph to represent the decomposition of the query, which can be dynamically resolved according to the decomposing state. All modules are driven by the same underlying LLM, distinguished by task-specific role tokens that are individually optimized. This design allows RoleRAG to dynamically activate different modules within a single LLM instance, thereby streamlining deployment and reducing resource consumption. Experimental results on five open-domain question-answering datasets demonstrate the effectiveness, generalizability, and flexibility of our framework.
Abstract:Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
Abstract:Large reasoning models (LRMs), such as OpenAI-o1 and DeepSeek-R1, demonstrate impressive long-horizon reasoning capabilities. However, their reliance on static internal knowledge limits their performance on complex, knowledge-intensive tasks and hinders their ability to produce comprehensive research reports requiring synthesis of diverse web information. To address this, we propose \textbf{WebThinker}, a deep research agent that empowers LRMs to autonomously search the web, navigate web pages, and draft research reports during the reasoning process. WebThinker integrates a \textbf{Deep Web Explorer} module, enabling LRMs to dynamically search, navigate, and extract information from the web when encountering knowledge gaps. It also employs an \textbf{Autonomous Think-Search-and-Draft strategy}, allowing the model to seamlessly interleave reasoning, information gathering, and report writing in real time. To further enhance research tool utilization, we introduce an \textbf{RL-based training strategy} via iterative online Direct Preference Optimization (DPO). Extensive experiments on complex reasoning benchmarks (GPQA, GAIA, WebWalkerQA, HLE) and scientific report generation tasks (Glaive) demonstrate that WebThinker significantly outperforms existing methods and strong proprietary systems. Our approach enhances LRM reliability and applicability in complex scenarios, paving the way for more capable and versatile deep research systems. The code is available at https://github.com/RUC-NLPIR/WebThinker.
Abstract:Long-context understanding poses significant challenges in natural language processing, particularly for real-world dialogues characterized by speech-based elements, high redundancy, and uneven information density. Although large language models (LLMs) achieve impressive results on existing benchmarks, these datasets fail to reflect the complexities of such texts, limiting their applicability to practical scenarios. To bridge this gap, we construct the first spoken long-text dataset, derived from live streams, designed to reflect the redundancy-rich and conversational nature of real-world scenarios. We construct tasks in three categories: retrieval-dependent, reasoning-dependent, and hybrid. We then evaluate both popular LLMs and specialized methods to assess their ability to understand long-contexts in these tasks. Our results show that current methods exhibit strong task-specific preferences and perform poorly on highly redundant inputs, with no single method consistently outperforming others. We propose a new baseline that better handles redundancy in spoken text and achieves strong performance across tasks. Our findings highlight key limitations of current methods and suggest future directions for improving long-context understanding. Finally, our benchmark fills a gap in evaluating long-context spoken language understanding and provides a practical foundation for developing real-world e-commerce systems. The code and benchmark are available at https://github.com/Yarayx/livelongbench.
Abstract:Retrieval-augmented generation (RAG) shows strong potential in addressing long-video understanding (LVU) tasks. However, traditional RAG methods remain fundamentally limited due to their dependence on explicit search queries, which are unavailable in many situations. To overcome this challenge, we introduce a novel RAG-based LVU approach inspired by the cognitive memory of human beings, which is called MemVid. Our approach operates with four basics steps: memorizing holistic video information, reasoning about the task's information needs based on the memory, retrieving critical moments based on the information needs, and focusing on the retrieved moments to produce the final answer. To enhance the system's memory-grounded reasoning capabilities and achieve optimal end-to-end performance, we propose a curriculum learning strategy. This approach begins with supervised learning on well-annotated reasoning results, then progressively explores and reinforces more plausible reasoning outcomes through reinforcement learning. We perform extensive evaluations on popular LVU benchmarks, including MLVU, VideoMME and LVBench. In our experiment, MemVid significantly outperforms existing RAG-based methods and popular LVU models, which demonstrate the effectiveness of our approach. Our model and source code will be made publicly available upon acceptance.
Abstract:In real-world information-seeking scenarios, users have dynamic and diverse needs, requiring RAG systems to demonstrate adaptable resilience. To comprehensively evaluate the resilience of current RAG methods, we introduce HawkBench, a human-labeled, multi-domain benchmark designed to rigorously assess RAG performance across categorized task types. By stratifying tasks based on information-seeking behaviors, HawkBench provides a systematic evaluation of how well RAG systems adapt to diverse user needs. Unlike existing benchmarks, which focus primarily on specific task types (mostly factoid queries) and rely on varying knowledge bases, HawkBench offers: (1) systematic task stratification to cover a broad range of query types, including both factoid and rationale queries, (2) integration of multi-domain corpora across all task types to mitigate corpus bias, and (3) rigorous annotation for high-quality evaluation. HawkBench includes 1,600 high-quality test samples, evenly distributed across domains and task types. Using this benchmark, we evaluate representative RAG methods, analyzing their performance in terms of answer quality and response latency. Our findings highlight the need for dynamic task strategies that integrate decision-making, query interpretation, and global knowledge understanding to improve RAG generalizability. We believe HawkBench serves as a pivotal benchmark for advancing the resilience of RAG methods and their ability to achieve general-purpose information seeking.
Abstract:The efficient processing of long context poses a serious challenge for large language models (LLMs). Recently, retrieval-augmented generation (RAG) has emerged as a promising strategy for this problem, as it enables LLMs to make selective use of the long context for efficient computation. However, existing RAG approaches lag behind other long-context processing methods due to inherent limitations on inaccurate retrieval and fragmented contexts. To address these challenges, we introduce RetroLM, a novel RAG framework for long-context processing. Unlike traditional methods, RetroLM employs KV-level retrieval augmentation, where it partitions the LLM's KV cache into contiguous pages and retrieves the most crucial ones for efficient computation. This approach enhances robustness to retrieval inaccuracy, facilitates effective utilization of fragmented contexts, and saves the cost from repeated computation. Building on this framework, we further develop a specialized retriever for precise retrieval of critical pages and conduct unsupervised post-training to optimize the model's ability to leverage retrieved information. We conduct comprehensive evaluations with a variety of benchmarks, including LongBench, InfiniteBench, and RULER, where RetroLM significantly outperforms existing long-context LLMs and efficient long-context processing methods, particularly in tasks requiring intensive reasoning or extremely long-context comprehension.
Abstract:Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query's information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE's effectiveness, achieving improvements in both performance and efficiency.
Abstract:Processing long contexts poses a significant challenge for large language models (LLMs) due to their inherent context-window limitations and the computational burden of extensive key-value (KV) activations, which severely impact efficiency. For information-seeking tasks, full context perception is often unnecessary, as a query's information needs can dynamically range from localized details to a global perspective, depending on its complexity. However, existing methods struggle to adapt effectively to these dynamic information needs. In the paper, we propose a method for processing long-context information-seeking tasks via query-guided Activation Refilling (ACRE). ACRE constructs a Bi-layer KV Cache for long contexts, where the layer-1 (L1) cache compactly captures global information, and the layer-2 (L2) cache provides detailed and localized information. ACRE establishes a proxying relationship between the two caches, allowing the input query to attend to the L1 cache and dynamically refill it with relevant entries from the L2 cache. This mechanism integrates global understanding with query-specific local details, thus improving answer decoding. Experiments on a variety of long-context information-seeking datasets demonstrate ACRE's effectiveness, achieving improvements in both performance and efficiency.