Abstract:In knowledge distillation (KD), logit distillation (LD) aims to transfer class-level knowledge from a more powerful teacher network to a small student model via accurate teacher-student alignment at the logits level. Since high-confidence object classes usually dominate the distillation process, low-probability classes which also contain discriminating information are downplayed in conventional methods, leading to insufficient knowledge transfer. To address this issue, we propose a simple yet effective LD method termed Progressive Class-level Distillation (PCD). In contrast to existing methods which perform all-class ensemble distillation, our PCD approach performs stage-wise distillation for step-by-step knowledge transfer. More specifically, we perform ranking on teacher-student logits difference for identifying distillation priority from scratch, and subsequently divide the entire LD process into multiple stages. Next, bidirectional stage-wise distillation incorporating fine-to-coarse progressive learning and reverse coarse-to-fine refinement is conducted, allowing comprehensive knowledge transfer via sufficient logits alignment within separate class groups in different distillation stages. Extension experiments on public benchmarking datasets demonstrate the superiority of our method compared to state-of-the-arts for both classification and detection tasks.
Abstract:Intellectual Property (IP) is a unique domain that integrates technical and legal knowledge, making it inherently complex and knowledge-intensive. As large language models (LLMs) continue to advance, they show great potential for processing IP tasks, enabling more efficient analysis, understanding, and generation of IP-related content. However, existing datasets and benchmarks either focus narrowly on patents or cover limited aspects of the IP field, lacking alignment with real-world scenarios. To bridge this gap, we introduce the first comprehensive IP task taxonomy and a large, diverse bilingual benchmark, IPBench, covering 8 IP mechanisms and 20 tasks. This benchmark is designed to evaluate LLMs in real-world intellectual property applications, encompassing both understanding and generation. We benchmark 16 LLMs, ranging from general-purpose to domain-specific models, and find that even the best-performing model achieves only 75.8% accuracy, revealing substantial room for improvement. Notably, open-source IP and law-oriented models lag behind closed-source general-purpose models. We publicly release all data and code of IPBench and will continue to update it with additional IP-related tasks to better reflect real-world challenges in the intellectual property domain.