Abstract:Personalized text-to-image generation has gained significant attention for its capability to generate high-fidelity portraits of specific identities conditioned on user-defined prompts. Existing methods typically involve test-time fine-tuning or instead incorporating an additional pre-trained branch. However, these approaches struggle to simultaneously address the demands of efficiency, identity fidelity, and preserving the model's original generative capabilities. In this paper, we propose DiffLoRA, a novel approach that leverages diffusion models as a hypernetwork to predict personalized low-rank adaptation (LoRA) weights based on the reference images. By integrating these LoRA weights into the text-to-image model, DiffLoRA achieves personalization during inference without further training. Additionally, we propose an identity-oriented LoRA weight construction pipeline to facilitate the training of DiffLoRA. By utilizing the dataset produced by this pipeline, our DiffLoRA consistently generates high-performance and accurate LoRA weights. Extensive evaluations demonstrate the effectiveness of our method, achieving both time efficiency and maintaining identity fidelity throughout the personalization process.
Abstract:Artwork analysis is important and fundamental skill for art appreciation, which could enrich personal aesthetic sensibility and facilitate the critical thinking ability. Understanding artworks is challenging due to its subjective nature, diverse interpretations, and complex visual elements, requiring expertise in art history, cultural background, and aesthetic theory. However, limited by the data collection and model ability, previous works for automatically analyzing artworks mainly focus on classification, retrieval, and other simple tasks, which is far from the goal of AI. To facilitate the research progress, in this paper, we step further to compose comprehensive analysis inspired by the remarkable perception and generation ability of large multimodal models. Specifically, we first propose a task of composing paragraph analysis for artworks, i.e., painting in this paper, only focusing on visual characteristics to formulate more comprehensive understanding of artworks. To support the research on formal analysis, we collect a large dataset PaintingForm, with about 19k painting images and 50k analysis paragraphs. We further introduce a superior large multimodal model for painting analysis composing, dubbed GalleryGPT, which is slightly modified and fine-tuned based on LLaVA architecture leveraging our collected data. We conduct formal analysis generation and zero-shot experiments across several datasets to assess the capacity of our model. The results show remarkable performance improvements comparing with powerful baseline LMMs, demonstrating its superb ability of art analysis and generalization. \textcolor{blue}{The codes and model are available at: https://github.com/steven640pixel/GalleryGPT.
Abstract:Cross-modal coherence modeling is essential for intelligent systems to help them organize and structure information, thereby understanding and creating content of the physical world coherently like human-beings. Previous work on cross-modal coherence modeling attempted to leverage the order information from another modality to assist the coherence recovering of the target modality. Despite of the effectiveness, labeled associated coherency information is not always available and might be costly to acquire, making the cross-modal guidance hard to leverage. To tackle this challenge, this paper explores a new way to take advantage of cross-modal guidance without gold labels on coherency, and proposes the Weak Cross-Modal Guided Ordering (WeGO) model. More specifically, it leverages high-confidence predicted pairwise order in one modality as reference information to guide the coherence modeling in another. An iterative learning paradigm is further designed to jointly optimize the coherence modeling in two modalities with selected guidance from each other. The iterative cross-modal boosting also functions in inference to further enhance coherence prediction in each modality. Experimental results on two public datasets have demonstrated that the proposed method outperforms existing methods for cross-modal coherence modeling tasks. Major technical modules have been evaluated effective through ablation studies. Codes are available at: \url{https://github.com/scvready123/IterWeGO}.
Abstract:Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.
Abstract:In this study, we address the intricate challenge of multi-task dense prediction, encompassing tasks such as semantic segmentation, depth estimation, and surface normal estimation, particularly when dealing with partially annotated data (MTPSL). The complexity arises from the absence of complete task labels for each training image. Given the inter-related nature of these pixel-wise dense tasks, our focus is on mining and capturing cross-task relationships. Existing solutions typically rely on learning global image representations for global cross-task image matching, imposing constraints that, unfortunately, sacrifice the finer structures within the images. Attempting local matching as a remedy faces hurdles due to the lack of precise region supervision, making local alignment a challenging endeavor. The introduction of Segment Anything Model (SAM) sheds light on addressing local alignment challenges by providing free and high-quality solutions for region detection. Leveraging SAM-detected regions, the subsequent challenge lies in aligning the representations within these regions. Diverging from conventional methods that directly learn a monolithic image representation, our proposal involves modeling region-wise representations using Gaussian Distributions. Aligning these distributions between corresponding regions from different tasks imparts higher flexibility and capacity to capture intra-region structures, accommodating a broader range of tasks. This innovative approach significantly enhances our ability to effectively capture cross-task relationships, resulting in improved overall performance in partially supervised multi-task dense prediction scenarios. Extensive experiments conducted on two widely used benchmarks underscore the superior effectiveness of our proposed method, showcasing state-of-the-art performance even when compared to fully supervised methods.
Abstract:Low-light image enhancement (LLIE) has achieved promising performance by employing conditional diffusion models. In this study, we propose ReCo-Diff, a novel approach that incorporates Retinex-based prior as an additional pre-processing condition to regulate the generating capabilities of the diffusion model. ReCo-Diff first leverages a pre-trained decomposition network to produce initial reflectance and illumination maps of the low-light image. Then, an adjustment network is introduced to suppress the noise in the reflectance map and brighten the illumination map, thus forming the learned Retinex-based condition. The condition is integrated into a refinement network, implementing Retinex-based conditional modules that offer sufficient guidance at both feature- and image-levels. By treating Retinex theory as a condition, ReCo-Diff presents a unique perspective for establishing an LLIE-specific diffusion model. Extensive experiments validate the rationality and superiority of our ReCo-Diff approach. The code will be made publicly available.
Abstract:The goal of Universal Cross-Domain Retrieval (UCDR) is to achieve robust performance in generalized test scenarios, wherein data may belong to strictly unknown domains and categories during training. Recently, pre-trained models with prompt tuning have shown strong generalization capabilities and attained noteworthy achievements in various downstream tasks, such as few-shot learning and video-text retrieval. However, applying them directly to UCDR may not sufficiently to handle both domain shift (i.e., adapting to unfamiliar domains) and semantic shift (i.e., transferring to unknown categories). To this end, we propose Prompting-to-Simulate (ProS), the first method to apply prompt tuning for UCDR. ProS employs a two-step process to simulate Content-aware Dynamic Prompts (CaDP) which can impact models to produce generalized features for UCDR. Concretely, in Prompt Units Learning stage, we introduce two Prompt Units to individually capture domain and semantic knowledge in a mask-and-align way. Then, in Context-aware Simulator Learning stage, we train a Content-aware Prompt Simulator under a simulated test scenarios to produce the corresponding CaDP. Extensive experiments conducted on three benchmark datasets show that our method achieves new state-of-the-art performance without bringing excessive parameters. Our method is publicly available at https://anonymous.4open.science/r/ProS
Abstract:Story Visualization aims to generate images aligned with story prompts, reflecting the coherence of storybooks through visual consistency among characters and scenes.Whereas current approaches exclusively concentrate on characters and neglect the visual consistency among contextually correlated scenes, resulting in independent character images without inter-image coherence.To tackle this issue, we propose a new presentation form for Story Visualization called Storyboard, inspired by film-making, as illustrated in Fig.1.Specifically, a Storyboard unfolds a story into visual representations scene by scene. Within each scene in Storyboard, characters engage in activities at the same location, necessitating both visually consistent scenes and characters.For Storyboard, we design a general framework coined as Make-A-Storyboard that applies disentangled control over the consistency of contextual correlated characters and scenes and then merge them to form harmonized images.Extensive experiments demonstrate 1) Effectiveness.the effectiveness of the method in story alignment, character consistency, and scene correlation; 2) Generalization. Our method could be seamlessly integrated into mainstream Image Customization methods, empowering them with the capability of story visualization.
Abstract:Catastrophic Forgetting (CF) is a prominent issue in continual learning. Parameter isolation addresses this challenge by masking a sub-network for each task to mitigate interference with old tasks. However, these sub-networks are constructed relying on weight magnitude, which does not necessarily correspond to the importance of weights, resulting in maintaining unimportant weights and constructing redundant sub-networks. To overcome this limitation, inspired by information bottleneck, which removes redundancy between adjacent network layers, we propose \textbf{\underline{I}nformation \underline{B}ottleneck \underline{M}asked sub-network (IBM)} to eliminate redundancy within sub-networks. Specifically, IBM accumulates valuable information into essential weights to construct redundancy-free sub-networks, not only effectively mitigating CF by freezing the sub-networks but also facilitating new tasks training through the transfer of valuable knowledge. Additionally, IBM decomposes hidden representations to automate the construction process and make it flexible. Extensive experiments demonstrate that IBM consistently outperforms state-of-the-art methods. Notably, IBM surpasses the state-of-the-art parameter isolation method with a 70\% reduction in the number of parameters within sub-networks and an 80\% decrease in training time.
Abstract:Referring Expression Comprehension (REC) aims to localize an image region of a given object described by a natural-language expression. While promising performance has been demonstrated, existing REC algorithms make a strong assumption that training data feeding into a model are given upfront, which degrades its practicality for real-world scenarios. In this paper, we propose Continual Referring Expression Comprehension (CREC), a new setting for REC, where a model is learning on a stream of incoming tasks. In order to continuously improve the model on sequential tasks without forgetting prior learned knowledge and without repeatedly re-training from a scratch, we propose an effective baseline method named Dual Modular Memorization (DMM), which alleviates the problem of catastrophic forgetting by two memorization modules: Implicit-Memory and Explicit-Memory. Specifically, the former module aims to constrain drastic changes to important parameters learned on old tasks when learning a new task; while the latter module maintains a buffer pool to dynamically select and store representative samples of each seen task for future rehearsal. We create three benchmarks for the new CREC setting, by respectively re-splitting three widely-used REC datasets RefCOCO, RefCOCO+ and RefCOCOg into sequential tasks. Extensive experiments on the constructed benchmarks demonstrate that our DMM method significantly outperforms other alternatives, based on two popular REC backbones. We make the source code and benchmarks publicly available to foster future progress in this field: https://github.com/zackschen/DMM.