Abstract:Alzheimer's disease (AD) is the most prevalent neurodegenerative disease; yet its currently available treatments are limited to stopping disease progression. Moreover, effectiveness of these treatments is not guaranteed due to the heterogenetiy of the disease. Therefore, it is essential to be able to identify the disease subtypes at a very early stage. Current data driven approaches are able to classify the subtypes at later stages of AD or related disorders, but struggle when predicting at the asymptomatic or prodromal stage. Moreover, most existing models either lack explainability behind the classification or only use a single modality for the assessment, limiting scope of its analysis. Thus, we propose a multimodal framework that uses early-stage indicators such as imaging, genetics and clinical assessments to classify AD patients into subtypes at early stages. Similarly, we build prompts and use large language models, such as ChatGPT, to interpret the findings of our model. In our framework, we propose a tri-modal co-attention mechanism (Tri-COAT) to explicitly learn the cross-modal feature associations. Our proposed model outperforms baseline models and provides insight into key cross-modal feature associations supported by known biological mechanisms.
Abstract:Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions. Unsupervised Domain Adaptation (UDA) techniques have been proposed to adapt models trained in the source domain to the target domain. However, those methods require a large number of images from the target domain for model training. In this paper, we propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training. To accomplish this challenging task, first, a spectral sensitivity map is introduced to characterize the generalization weaknesses of models in the frequency domain. We then developed a Sensitivity-guided Spectral Adversarial MixUp (SAMix) method to generate target-style images to effectively suppresses the model sensitivity, which leads to improved model generalizability in the target domain. We demonstrated the proposed method and rigorously evaluated its performance on multiple tasks using several public datasets.
Abstract:Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity". Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods.
Abstract:Regression plays an essential role in many medical imaging applications for estimating various clinical risk or measurement scores. While training strategies and loss functions have been studied for the deep neural networks in medical image classification tasks, options for regression tasks are very limited. One of the key challenges is that the high-dimensional feature representation learned by existing popular loss functions like Mean Squared Error or L1 loss is hard to interpret. In this paper, we propose a novel Regression Metric Loss (RM-Loss), which endows the representation space with the semantic meaning of the label space by finding a representation manifold that is isometric to the label space. Experiments on two regression tasks, i.e. coronary artery calcium score estimation and bone age assessment, show that RM-Loss is superior to the existing popular regression losses on both performance and interpretability. Code is available at https://github.com/DIAL-RPI/Regression-Metric-Loss.
Abstract:Prostate cancer biopsy benefits from accurate fusion of transrectal ultrasound (TRUS) and magnetic resonance (MR) images. In the past few years, convolutional neural networks (CNNs) have been proved powerful in extracting image features crucial for image registration. However, challenging applications and recent advances in computer vision suggest that CNNs are quite limited in its ability to understand spatial correspondence between features, a task in which the self-attention mechanism excels. This paper aims to develop a self-attention mechanism specifically for cross-modal image registration. Our proposed cross-modal attention block effectively maps each of the features in one volume to all features in the corresponding volume. Our experimental results demonstrate that a CNN network designed with the cross-modal attention block embedded outperforms an advanced CNN network 10 times of its size. We also incorporated visualization techniques to improve the interpretability of our network. The source code of our work is available at https://github.com/DIAL-RPI/Attention-Reg .
Abstract:Radiologists usually observe anatomical regions of chest X-ray images as well as the overall image before making a decision. However, most existing deep learning models only look at the entire X-ray image for classification, failing to utilize important anatomical information. In this paper, we propose a novel multi-label chest X-ray classification model that accurately classifies the image finding and also localizes the findings to their correct anatomical regions. Specifically, our model consists of two modules, the detection module and the anatomical dependency module. The latter utilizes graph convolutional networks, which enable our model to learn not only the label dependency but also the relationship between the anatomical regions in the chest X-ray. We further utilize a method to efficiently create an adjacency matrix for the anatomical regions using the correlation of the label across the different regions. Detailed experiments and analysis of our results show the effectiveness of our method when compared to the current state-of-the-art multi-label chest X-ray image classification methods while also providing accurate location information.
Abstract:The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also the performance of downstream medical image analysis tasks. Various low-dose CT denoising methods, especially the recent deep learning based approaches, have produced impressive results. However, the existing denoising methods are all downstream-task-agnostic and neglect the diverse needs of the downstream applications. In this paper, we introduce a novel Task-Oriented Denoising Network (TOD-Net) with a task-oriented loss leveraging knowledge from the downstream tasks. Comprehensive empirical analysis shows that the task-oriented loss complements other task agnostic losses by steering the denoiser to enhance the image quality in the task related regions of interest. Such enhancement in turn brings general boosts on the performance of various methods for the downstream task. The presented work may shed light on the future development of context-aware image denoising methods.
Abstract:Gait is a unique biometric feature that can be recognized at a distance; thus, it has broad applications in crime prevention, forensic identification, and social security. To portray a gait, existing gait recognition methods utilize either a gait template which makes it difficult to preserve temporal information, or a gait sequence that maintains unnecessary sequential constraints and thus loses the flexibility of gait recognition. In this paper, we present a novel perspective that utilizes gait as a deep set, which means that a set of gait frames are integrated by a global-local fused deep network inspired by the way our left- and right-hemisphere processes information to learn information that can be used in identification. Based on this deep set perspective, our method is immune to frame permutations, and can naturally integrate frames from different videos that have been acquired under different scenarios, such as diverse viewing angles, different clothes, or different item-carrying conditions. Experiments show that under normal walking conditions, our single-model method achieves an average rank-1 accuracy of 96.1% on the CASIA-B gait dataset and an accuracy of 87.9% on the OU-MVLP gait dataset. Under various complex scenarios, our model also exhibits a high level of robustness. It achieves accuracies of 90.8% and 70.3% on CASIA-B under bag-carrying and coat-wearing walking conditions respectively, significantly outperforming the best existing methods. Moreover, the proposed method maintains a satisfactory accuracy even when only small numbers of frames are available in the test samples; for example, it achieves 85.0% on CASIA-B even when using only 7 frames. The source code has been released at https://github.com/AbnerHqC/GaitSet.
Abstract:Unsupervised domain adaptation (UDA) is widely used to transfer a model trained in a labeled source domain to an unlabeled target domain. However, with extensive studies showing deep learning models being vulnerable under adversarial attacks, the adversarial robustness of models in domain adaptation application has largely been overlooked. In this paper, we first conducted an empirical analysis to show that severe inter-class mismatch is the key barrier against achieving a robust model with UDA. Then, we propose a novel approach, Class-consistent Unsupervised Robust Domain Adaptation (CURDA), for robustified unsupervised domain adaptation. With the introduced contrastive robust training and source anchored adversarial contrastive loss, our proposed CURDA is able to effectively conquer the challenge of inter-class mismatch. Experiments on two public benchmarks show that, compared with vanilla UDA, CURDA can significantly improve model robustness in target domains for up to 67.4% costing only 0% to 4.4% of accuracy on the clean data samples. This is one of the first works focusing on the new problem of robustifying unsupervised domain adaptation, which demonstrates that UDA models can be substantially robustified while maintaining competitive accuracy.
Abstract:The high risk population of cardiovascular disease (CVD) is simultaneously at high risk of lung cancer. Given the dominance of low dose computed tomography (LDCT) for lung cancer screening, the feasibility of extracting information on CVD from the same LDCT scan would add major value to patients at no additional radiation dose. However, with strong noise in LDCT images and without electrocardiogram (ECG) gating, CVD risk analysis from LDCT is highly challenging. Here we present an innovative deep learning model to address this challenge. Our deep model was trained with 30,286 LDCT volumes and achieved the state-of-the-art performance (area under the curve (AUC) of 0.869) on 2,085 National Lung Cancer Screening Trial (NLST) subjects, and effectively identified patients with high CVD mortality risks (AUC of 0.768). Our deep model was further calibrated against the clinical gold standard CVD risk scores from ECG-gated dedicated cardiac CT, including coronary artery calcification (CAC) score, CAD-RADS score and MESA 10-year CHD risk score from an independent dataset of 106 subjects. In this validation study, our model achieved AUC of 0.942, 0.809 and 0.817 for CAC, CAD-RADS and MESA scores, respectively. Our deep learning model has the potential to convert LDCT for lung cancer screening into dual-screening quantitative tool for CVD risk estimation.