Abstract:Activation sparsity can enable practical inference speedups in large language models (LLMs) by reducing the compute and memory-movement required for matrix multiplications during the forward pass. However, existing methods face limitations that inhibit widespread adoption. Some approaches are tailored towards older models with ReLU-based sparsity, while others require extensive continued pre-training on up to hundreds of billions of tokens. This paper describes TEAL, a simple training-free method that applies magnitude-based activation sparsity to hidden states throughout the entire model. TEAL achieves 40-50% model-wide sparsity with minimal performance degradation across Llama-2, Llama-3, and Mistral families, with sizes varying from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock decoding speed-ups of up to 1.53$\times$ and 1.8$\times$ at 40% and 50% model-wide sparsity. TEAL is compatible with weight quantization, enabling further efficiency gains.
Abstract:The deployment of large language models (LLMs) is often constrained by memory bandwidth, where the primary bottleneck is the cost of transferring model parameters from the GPU's global memory to its registers. When coupled with custom kernels that fuse the dequantization and matmul operations, weight-only quantization can thus enable faster inference by reducing the amount of memory movement. However, developing high-performance kernels for weight-quantized LLMs presents substantial challenges, especially when the weights are compressed to non-evenly-divisible bit widths (e.g., 3 bits) with non-uniform, lookup table (LUT) quantization. This paper describes FLUTE, a flexible lookup table engine for LUT-quantized LLMs, which uses offline restructuring of the quantized weight matrix to minimize bit manipulations associated with unpacking, and vectorization and duplication of the lookup table to mitigate shared memory bandwidth constraints. At batch sizes < 32 and quantization group size of 128 (typical in LLM inference), the FLUTE kernel can be 2-4x faster than existing GEMM kernels. As an application of FLUTE, we explore a simple extension to lookup table-based NormalFloat quantization and apply it to quantize LLaMA3 to various configurations, obtaining competitive quantization performance against strong baselines while obtaining an end-to-end throughput increase of 1.5 to 2 times.
Abstract:Semantic change detection is an important task in geoscience and earth observation. By producing a semantic change map for each temporal phase, both the land use land cover categories and change information can be interpreted. Recently some multi-task learning based semantic change detection methods have been proposed to decompose the task into semantic segmentation and binary change detection subtasks. However, previous works comprise triple branches in an entangled manner, which may not be optimal and hard to adopt foundation models. Besides, lacking explicit refinement of bitemporal features during fusion may cause low accuracy. In this letter, we propose a novel late-stage bitemporal feature fusion network to address the issue. Specifically, we propose local global attentional aggregation module to strengthen feature fusion, and propose local global context enhancement module to highlight pivotal semantics. Comprehensive experiments are conducted on two public datasets, including SECOND and Landsat-SCD. Quantitative and qualitative results show that our proposed model achieves new state-of-the-art performance on both datasets.
Abstract:Masked Autoencoder (MAE) is a notable method for self-supervised pretraining in visual representation learning. It operates by randomly masking image patches and reconstructing these masked patches using the unmasked ones. A key limitation of MAE lies in its disregard for the varying informativeness of different patches, as it uniformly selects patches to mask. To overcome this, some approaches propose masking based on patch informativeness. However, these methods often do not consider the specific requirements of downstream tasks, potentially leading to suboptimal representations for these tasks. In response, we introduce the Multi-level Optimized Mask Autoencoder (MLO-MAE), a novel framework that leverages end-to-end feedback from downstream tasks to learn an optimal masking strategy during pretraining. Our experimental findings highlight MLO-MAE's significant advancements in visual representation learning. Compared to existing methods, it demonstrates remarkable improvements across diverse datasets and tasks, showcasing its adaptability and efficiency. Our code is available at: https://github.com/Alexiland/MLOMAE
Abstract:Multi-objective reinforcement learning (MORL) aims to find a set of high-performing and diverse policies that address trade-offs between multiple conflicting objectives. However, in practice, decision makers (DMs) often deploy only one or a limited number of trade-off policies. Providing too many diversified trade-off policies to the DM not only significantly increases their workload but also introduces noise in multi-criterion decision-making. With this in mind, we propose a human-in-the-loop policy optimization framework for preference-based MORL that interactively identifies policies of interest. Our method proactively learns the DM's implicit preference information without requiring any a priori knowledge, which is often unavailable in real-world black-box decision scenarios. The learned preference information is used to progressively guide policy optimization towards policies of interest. We evaluate our approach against three conventional MORL algorithms that do not consider preference information and four state-of-the-art preference-based MORL algorithms on two MORL environments for robot control and smart grid management. Experimental results fully demonstrate the effectiveness of our proposed method in comparison to the other peer algorithms.
Abstract:We propose a simple approach for memory-efficient adaptation of pretrained language models. Our approach uses an iterative algorithm to decompose each pretrained matrix into a high-precision low-rank component and a memory-efficient quantized component. During finetuning, the quantized component remains fixed and only the low-rank component is updated. We present an integer linear programming formulation of the quantization component which enables dynamic configuration of quantization parameters (e.g., bit-width, block size) for each matrix given an overall target memory budget. We further explore a data-aware version of the algorithm which uses an approximation of the Fisher information matrix to weight the reconstruction objective during matrix decomposition. Experiments on adapting RoBERTa and LLaMA-2 (7B and 70B) demonstrate that our low-rank plus quantized matrix decomposition approach (LQ-LoRA) outperforms strong QLoRA and GPTQ-LoRA baselines and moreover enables more aggressive quantization. For example, on the OpenAssistant benchmark LQ-LoRA is able to learn a 2.5-bit LLaMA-2 model that is competitive with a model finetuned with 4-bit QLoRA. When finetuned on a language modeling calibration dataset, LQ-LoRA can also be used for model compression; in this setting our 2.75-bit LLaMA-2-70B model (which has 2.85 bits on average when including the low-rank components and requires 27GB of GPU memory) is competitive with the original model in full precision.
Abstract:Event Extraction (EE), aiming to identify and classify event triggers and arguments from event mentions, has benefited from pre-trained language models (PLMs). However, existing PLM-based methods ignore the information of trigger/argument fields, which is crucial for understanding event schemas. To this end, we propose a Probabilistic reCoupling model enhanced Event extraction framework (ProCE). Specifically, we first model the syntactic-related event fields as probabilistic biases, to clarify the event fields from ambiguous entanglement. Furthermore, considering multiple occurrences of the same triggers/arguments in EE, we explore probabilistic interaction strategies among multiple fields of the same triggers/arguments, to recouple the corresponding clarified distributions and capture more latent information fields. Experiments on EE datasets demonstrate the effectiveness and generalization of our proposed approach.
Abstract:The canonical formulation of federated learning treats it as a distributed optimization problem where the model parameters are optimized against a global loss function that decomposes across client loss functions. A recent alternative formulation instead treats federated learning as a distributed inference problem, where the goal is to infer a global posterior from partitioned client data (Al-Shedivat et al., 2021). This paper extends the inference view and describes a variational inference formulation of federated learning where the goal is to find a global variational posterior that well-approximates the true posterior. This naturally motivates an expectation propagation approach to federated learning (FedEP), where approximations to the global posterior are iteratively refined through probabilistic message-passing between the central server and the clients. We conduct an extensive empirical study across various algorithmic considerations and describe practical strategies for scaling up expectation propagation to the modern federated setting. We apply FedEP on standard federated learning benchmarks and find that it outperforms strong baselines in terms of both convergence speed and accuracy.
Abstract:Recently, the success of pre-training in text domain has been fully extended to vision, audio, and cross-modal scenarios. The proposed pre-training models of different modalities are showing a rising trend of homogeneity in their model structures, which brings the opportunity to implement different pre-training models within a uniform framework. In this paper, we present TencentPretrain, a toolkit supporting pre-training models of different modalities. The core feature of TencentPretrain is the modular design. The toolkit uniformly divides pre-training models into 5 components: embedding, encoder, target embedding, decoder, and target. As almost all of common modules are provided in each component, users can choose the desired modules from different components to build a complete pre-training model. The modular design enables users to efficiently reproduce existing pre-training models or build brand-new one. We test the toolkit on text, vision, and audio benchmarks and show that it can match the performance of the original implementations.
Abstract:Enabling private inference is crucial for many cloud inference services that are based on Transformer models. However, existing private inference solutions for Transformers can increase the inference latency by more than 60x or significantly compromise the quality of inference results. In this paper, we design the framework MPCFORMER using secure multi-party computation (MPC) and Knowledge Distillation (KD). It can be used in tandem with many specifically designed MPC-friendly approximations and trained Transformer models. MPCFORMER significantly speeds up Transformer model inference in MPC settings while achieving similar ML performance to the input model. We evaluate MPCFORMER with various settings in MPC. On the IMDb dataset, we achieve similar performance to BERTBASE, while being 5.3x faster. On the GLUE benchmark, we achieve 97% performance of BERTBASE with a 2.2x speedup. We show that MPCFORMER remains effective with different trained Transformer weights such as ROBERTABASE and larger models including BERTLarge. In particular, we achieve similar performance to BERTLARGE, while being 5.93x faster on the IMDb dataset.