King Abdullah University of Science and Technology
Abstract:Conventional wisdom in deep learning optimization dictates updating all layers at every step-a principle followed by all recent state-of-the-art optimizers such as Muon. In this work, we challenge this assumption, showing that full-network updates can be fundamentally suboptimal, both in theory and in practice. We introduce a non-Euclidean Randomized Progressive Training method-Drop-Muon-a simple yet powerful framework that updates only a subset of layers per step according to a randomized schedule, combining the efficiency of progressive training with layer-specific non-Euclidean updates for top-tier performance. We provide rigorous convergence guarantees under both layer-wise smoothness and layer-wise $(L^0, L^1)$-smoothness, covering deterministic and stochastic gradient settings, marking the first such results for progressive training in the stochastic and non-smooth regime. Our cost analysis further reveals that full-network updates are not optimal unless a very specific relationship between layer smoothness constants holds. Through controlled CNN experiments, we empirically demonstrate that Drop-Muon consistently outperforms full-network Muon, achieving the same accuracy up to $1.4\times$ faster in wall-clock time. Together, our results suggest a shift in how large-scale models can be efficiently trained, challenging the status quo and offering a highly efficient, theoretically grounded alternative to full-network updates.
Abstract:Recent optimizers like Muon, Scion, and Gluon have pushed the frontier of large-scale deep learning by exploiting layer-wise linear minimization oracles (LMOs) over non-Euclidean norm balls, capturing neural network structure in ways traditional algorithms cannot. Yet, no principled distributed framework exists for these methods, and communication bottlenecks remain unaddressed. The very few distributed variants are heuristic, with no convergence guarantees in sight. We introduce EF21-Muon, the first communication-efficient, non-Euclidean LMO-based optimizer with rigorous convergence guarantees. EF21-Muon supports stochastic gradients, momentum, and bidirectional compression with error feedback-marking the first extension of error feedback beyond the Euclidean setting. It recovers Muon/Scion/Gluon when compression is off and specific norms are chosen, providing the first efficient distributed implementation of this powerful family. Our theory covers non-Euclidean smooth and the more general $(L^0, L^1)$-smooth setting, matching best-known Euclidean rates and enabling faster convergence under suitable norm choices. We further extend the analysis to layer-wise (generalized) smoothness regimes, capturing the anisotropic structure of deep networks. Experiments on NanoGPT benchmarking EF21-Muon against uncompressed Muon/Scion/Gluon demonstrate up to $7\times$ communication savings with no accuracy degradation.
Abstract:The recently proposed Broximal Point Method (BPM) [Gruntkowska et al., 2025] offers an idealized optimization framework based on iteratively minimizing the objective function over norm balls centered at the current iterate. It enjoys striking global convergence guarantees, converging linearly and in a finite number of steps for proper, closed and convex functions. However, its theoretical analysis has so far been confined to the Euclidean geometry. At the same time, emerging trends in deep learning optimization, exemplified by algorithms such as Muon [Jordan et al., 2024] and Scion [Pethick et al., 2025], demonstrate the practical advantages of minimizing over balls defined via non-Euclidean norms which better align with the underlying geometry of the associated loss landscapes. In this note, we ask whether the convergence theory of BPM can be extended to this more general, non-Euclidean setting. We give a positive answer, showing that most of the elegant guarantees of the original method carry over to arbitrary norm geometries. Along the way, we clarify which properties are preserved and which necessarily break down when leaving the Euclidean realm. Our analysis positions Non-Euclidean BPM as a conceptual blueprint for understanding a broad class of geometry-aware optimization algorithms, shedding light on the principles behind their practical effectiveness.
Abstract:Recent developments in deep learning optimization have brought about radically new algorithms based on the Linear Minimization Oracle (LMO) framework, such as $\sf Muon$ and $\sf Scion$. After over a decade of $\sf Adam$'s dominance, these LMO-based methods are emerging as viable replacements, offering several practical advantages such as improved memory efficiency, better hyperparameter transferability, and most importantly, superior empirical performance on large-scale tasks, including LLM training. However, a significant gap remains between their practical use and our current theoretical understanding: prior analyses (1) overlook the layer-wise LMO application of these optimizers in practice, and (2) rely on an unrealistic smoothness assumption, leading to impractically small stepsizes. To address both, we propose a new LMO-based method called $\sf Gluon$, capturing prior theoretically analyzed methods as special cases, and introduce a new refined generalized smoothness model that captures the layer-wise geometry of neural networks, matches the layer-wise practical implementation of $\sf Muon$ and $\sf Scion$, and leads to convergence guarantees with strong practical predictive power. Unlike prior results, our theoretical stepsizes closely match the fine-tuned values reported by Pethick et al. (2025). Our experiments with NanoGPT and CNN confirm that our assumption holds along the optimization trajectory, ultimately closing the gap between theory and practice.
Abstract:In this work, we introduce BurTorch, a compact high-performance framework designed to optimize Deep Learning (DL) training on single-node workstations through an exceptionally efficient CPU-based backpropagation (Rumelhart et al., 1986; Linnainmaa, 1970) implementation. Although modern DL frameworks rely on compilerlike optimizations internally, BurTorch takes a different path. It adopts a minimalist design and demonstrates that, in these circumstances, classical compiled programming languages can play a significant role in DL research. By eliminating the overhead of large frameworks and making efficient implementation choices, BurTorch achieves orders-of-magnitude improvements in performance and memory efficiency when computing $\nabla f(x)$ on a CPU. BurTorch features a compact codebase designed to achieve two key goals simultaneously. First, it provides a user experience similar to script-based programming environments. Second, it dramatically minimizes runtime overheads. In large DL frameworks, the primary source of memory overhead for relatively small computation graphs $f(x)$ is due to feature-heavy implementations. We benchmarked BurTorch against widely used DL frameworks in their execution modes: JAX (Bradbury et al., 2018), PyTorch (Paszke et al., 2019), TensorFlow (Abadi et al., 2016); and several standalone libraries: Autograd (Maclaurin et al., 2015), Micrograd (Karpathy, 2020), Apple MLX (Hannun et al., 2023). For small compute graphs, BurTorch outperforms best-practice solutions by up to $\times 2000$ in runtime and reduces memory consumption by up to $\times 3500$. For a miniaturized GPT-3 model (Brown et al., 2020), BurTorch achieves up to a $\times 20$ speedup and reduces memory up to $\times 80$ compared to PyTorch.
Abstract:Federated learning enables training machine learning models while preserving the privacy of participants. Surprisingly, there is no differentially private distributed method for smooth, non-convex optimization problems. The reason is that standard privacy techniques require bounding the participants' contributions, usually enforced via $\textit{clipping}$ of the updates. Existing literature typically ignores the effect of clipping by assuming the boundedness of gradient norms or analyzes distributed algorithms with clipping but ignores DP constraints. In this work, we study an alternative approach via $\textit{smoothed normalization}$ of the updates motivated by its favorable performance in the single-node setting. By integrating smoothed normalization with an error-feedback mechanism, we design a new distributed algorithm $\alpha$-$\sf NormEC$. We prove that our method achieves a superior convergence rate over prior works. By extending $\alpha$-$\sf NormEC$ to the DP setting, we obtain the first differentially private distributed optimization algorithm with provable convergence guarantees. Finally, our empirical results from neural network training indicate robust convergence of $\alpha$-$\sf NormEC$ across different parameter settings.
Abstract:Nonconvex optimization is central to modern machine learning, but the general framework of nonconvex optimization yields weak convergence guarantees that are too pessimistic compared to practice. On the other hand, while convexity enables efficient optimization, it is of limited applicability to many practical problems. To bridge this gap and better understand the practical success of optimization algorithms in nonconvex settings, we introduce a novel unified parametric assumption. Our assumption is general enough to encompass a broad class of nonconvex functions while also being specific enough to enable the derivation of a unified convergence theorem for gradient-based methods. Notably, by tuning the parameters of our assumption, we demonstrate its versatility in recovering several existing function classes as special cases and in identifying functions amenable to efficient optimization. We derive our convergence theorem for both deterministic and stochastic optimization, and conduct experiments to verify that our assumption can hold practically over optimization trajectories.




Abstract:Non-smooth and non-convex global optimization poses significant challenges across various applications, where standard gradient-based methods often struggle. We propose the Ball-Proximal Point Method, Broximal Point Method, or Ball Point Method (BPM) for short - a novel algorithmic framework inspired by the classical Proximal Point Method (PPM) (Rockafellar, 1976), which, as we show, sheds new light on several foundational optimization paradigms and phenomena, including non-convex and non-smooth optimization, acceleration, smoothing, adaptive stepsize selection, and trust-region methods. At the core of BPM lies the ball-proximal ("broximal") operator, which arises from the classical proximal operator by replacing the quadratic distance penalty by a ball constraint. Surprisingly, and in sharp contrast with the sublinear rate of PPM in the nonsmooth convex regime, we prove that BPM converges linearly and in a finite number of steps in the same regime. Furthermore, by introducing the concept of ball-convexity, we prove that BPM retains the same global convergence guarantees under weaker assumptions, making it a powerful tool for a broader class of potentially non-convex optimization problems. Just like PPM plays the role of a conceptual method inspiring the development of practically efficient algorithms and algorithmic elements, e.g., gradient descent, adaptive step sizes, acceleration (Ahn & Sra, 2020), and "W" in AdamW (Zhuang et al., 2022), we believe that BPM should be understood in the same manner: as a blueprint and inspiration for further development.
Abstract:Asynchronous methods are fundamental for parallelizing computations in distributed machine learning. They aim to accelerate training by fully utilizing all available resources. However, their greedy approach can lead to inefficiencies using more computation than required, especially when computation times vary across devices. If the computation times were known in advance, training could be fast and resource-efficient by assigning more tasks to faster workers. The challenge lies in achieving this optimal allocation without prior knowledge of the computation time distributions. In this paper, we propose ATA (Adaptive Task Allocation), a method that adapts to heterogeneous and random distributions of worker computation times. Through rigorous theoretical analysis, we show that ATA identifies the optimal task allocation and performs comparably to methods with prior knowledge of computation times. Experimental results further demonstrate that ATA is resource-efficient, significantly reducing costs compared to the greedy approach, which can be arbitrarily expensive depending on the number of workers.
Abstract:Popular post-training pruning methods such as Wanda and RIA are known for their simple, yet effective, designs that have shown exceptional empirical performance. Wanda optimizes performance through calibrated activations during pruning, while RIA emphasizes the relative, rather than absolute, importance of weight elements. Despite their practical success, a thorough theoretical foundation explaining these outcomes has been lacking. This paper introduces new theoretical insights that redefine the standard minimization objective for pruning, offering a deeper understanding of the factors contributing to their success. Our study extends beyond these insights by proposing complementary strategies that consider both input activations and weight significance. We validate these approaches through rigorous experiments, demonstrating substantial enhancements over existing methods. Furthermore, we introduce a novel training-free fine-tuning approach $R^2$-DSnoT that incorporates relative weight importance and a regularized decision boundary within a dynamic pruning-and-growing framework, significantly outperforming strong baselines and establishing a new state of the art.