Abstract:Background: Accurate assessment of metastatic burden in axillary lymph nodes is crucial for guiding breast cancer treatment decisions, yet conventional imaging modalities struggle to differentiate metastatic burden levels and capture comprehensive lymph node characteristics. This study leverages dual-energy computed tomography (DECT) to exploit spectral-spatial information for improved multi-class classification. Purpose: To develop a noninvasive DECT-based model classifying sentinel lymph nodes into three categories: no metastasis ($N_0$), low metastatic burden ($N_{+(1-2)}$), and heavy metastatic burden ($N_{+(\geq3)}$), thereby aiding therapeutic planning. Methods: We propose a novel space-squeeze method combining two innovations: (1) a channel-wise attention mechanism to compress and recalibrate spectral-spatial features across 11 energy levels, and (2) virtual class injection to sharpen inter-class boundaries and compact intra-class variations in the representation space. Results: Evaluated on 227 biopsy-confirmed cases, our method achieved an average test AUC of 0.86 (95% CI: 0.80-0.91) across three cross-validation folds, outperforming established CNNs (VGG, ResNet, etc). The channel-wise attention and virtual class components individually improved AUC by 5.01% and 5.87%, respectively, demonstrating complementary benefits. Conclusions: The proposed framework enhances diagnostic AUC by effectively integrating DECT's spectral-spatial data and mitigating class ambiguity, offering a promising tool for noninvasive metastatic burden assessment in clinical practice.
Abstract:Placenta Accreta Spectrum Disorders (PAS) pose significant risks during pregnancy, frequently leading to postpartum hemorrhage during cesarean deliveries and other severe clinical complications, with bleeding severity correlating to the degree of placental invasion. Consequently, accurate prenatal diagnosis of PAS and its subtypes-placenta accreta (PA), placenta increta (PI), and placenta percreta (PP)-is crucial. However, existing guidelines and methodologies predominantly focus on the presence of PAS, with limited research addressing subtype recognition. Additionally, previous multi-class diagnostic efforts have primarily relied on inefficient two-stage cascaded binary classification tasks. In this study, we propose a novel convolutional neural network (CNN) architecture designed for efficient one-stage multiclass diagnosis of PAS and its subtypes, based on 4,140 magnetic resonance imaging (MRI) slices. Our model features two branches: the main classification branch utilizes a residual block architecture comprising multiple residual blocks, while the second branch integrates anatomical features of the uteroplacental area and the adjacent uterine serous layer to enhance the model's attention during classification. Furthermore, we implement a multitask learning strategy to leverage both branches effectively. Experiments conducted on a real clinical dataset demonstrate that our model achieves state-of-the-art performance.
Abstract:We present StableMotion, a novel framework leverages knowledge (geometry and content priors) from pretrained large-scale image diffusion models to perform motion estimation, solving single-image-based image rectification tasks such as Stitched Image Rectangling (SIR) and Rolling Shutter Correction (RSC). Specifically, StableMotion framework takes text-to-image Stable Diffusion (SD) models as backbone and repurposes it into an image-to-motion estimator. To mitigate inconsistent output produced by diffusion models, we propose Adaptive Ensemble Strategy (AES) that consolidates multiple outputs into a cohesive, high-fidelity result. Additionally, we present the concept of Sampling Steps Disaster (SSD), the counterintuitive scenario where increasing the number of sampling steps can lead to poorer outcomes, which enables our framework to achieve one-step inference. StableMotion is verified on two image rectification tasks and delivers state-of-the-art performance in both, as well as showing strong generalizability. Supported by SSD, StableMotion offers a speedup of 200 times compared to previous diffusion model-based methods.
Abstract:Generative masked transformers have demonstrated remarkable success across various content generation tasks, primarily due to their ability to effectively model large-scale dataset distributions with high consistency. However, in the animation domain, large datasets are not always available. Applying generative masked modeling to generate diverse instances from a single MoCap reference may lead to overfitting, a challenge that remains unexplored. In this work, we present MotionDreamer, a localized masked modeling paradigm designed to learn internal motion patterns from a given motion with arbitrary topology and duration. By embedding the given motion into quantized tokens with a novel distribution regularization method, MotionDreamer constructs a robust and informative codebook for local motion patterns. Moreover, a sliding window local attention is introduced in our masked transformer, enabling the generation of natural yet diverse animations that closely resemble the reference motion patterns. As demonstrated through comprehensive experiments, MotionDreamer outperforms the state-of-the-art methods that are typically GAN or Diffusion-based in both faithfulness and diversity. Thanks to the consistency and robustness of the quantization-based approach, MotionDreamer can also effectively perform downstream tasks such as temporal motion editing, \textcolor{update}{crowd animation}, and beat-aligned dance generation, all using a single reference motion. Visit our project page: https://motiondreamer.github.io/
Abstract:RAW-to-sRGB mapping, or the simulation of the traditional camera image signal processor (ISP), aims to generate DSLR-quality sRGB images from raw data captured by smartphone sensors. Despite achieving comparable results to sophisticated handcrafted camera ISP solutions, existing learning-based methods still struggle with detail disparity and color distortion. In this paper, we present ISPDiffuser, a diffusion-based decoupled framework that separates the RAW-to-sRGB mapping into detail reconstruction in grayscale space and color consistency mapping from grayscale to sRGB. Specifically, we propose a texture-aware diffusion model that leverages the generative ability of diffusion models to focus on local detail recovery, in which a texture enrichment loss is further proposed to prompt the diffusion model to generate more intricate texture details. Subsequently, we introduce a histogram-guided color consistency module that utilizes color histogram as guidance to learn precise color information for grayscale to sRGB color consistency mapping, with a color consistency loss designed to constrain the learned color information. Extensive experimental results show that the proposed ISPDiffuser outperforms state-of-the-art competitors both quantitatively and visually. The code is available at https://github.com/RenYangSCU/ISPDiffuser.
Abstract:Can machine automatically generate multiple distinct and natural hand grasps, given specific contact region of an object in 3D? This motivates us to consider a novel task of \textit{Region Controllable Hand Grasp Generation (RegionGrasp)}, as follows: given as input a 3D object, together with its specific surface area selected as the intended contact region, to generate a diverse set of plausible hand grasps of the object, where the thumb finger tip touches the object surface on the contact region. To address this task, RegionGrasp-CVAE is proposed, which consists of two main parts. First, to enable contact region-awareness, we propose ConditionNet as the condition encoder that includes in it a transformer-backboned object encoder, O-Enc; a pretraining strategy is adopted by O-Enc, where the point patches of object surface are randomly masked off and subsequently restored, to further capture surface geometric information of the object. Second, to realize interaction awareness, HOINet is introduced to encode hand-object interaction features by entangling high-level hand features with embedded object features through geometric-aware multi-head cross attention. Empirical evaluations demonstrate the effectiveness of our approach qualitatively and quantitatively where it is shown to compare favorably with respect to the state of the art methods.
Abstract:In this paper, we propose a diffusion-based unsupervised framework that incorporates physically explainable Retinex theory with diffusion models for low-light image enhancement, named LightenDiffusion. Specifically, we present a content-transfer decomposition network that performs Retinex decomposition within the latent space instead of image space as in previous approaches, enabling the encoded features of unpaired low-light and normal-light images to be decomposed into content-rich reflectance maps and content-free illumination maps. Subsequently, the reflectance map of the low-light image and the illumination map of the normal-light image are taken as input to the diffusion model for unsupervised restoration with the guidance of the low-light feature, where a self-constrained consistency loss is further proposed to eliminate the interference of normal-light content on the restored results to improve overall visual quality. Extensive experiments on publicly available real-world benchmarks show that the proposed LightenDiffusion outperforms state-of-the-art unsupervised competitors and is comparable to supervised methods while being more generalizable to various scenes. Our code is available at https://github.com/JianghaiSCU/LightenDiffusion.
Abstract:We address the reflection optimization problem for a reconfigurable intelligent surface (RIS), where the RIS elements feature a set of non-uniformly spaced discrete phase shifts. This is motivated by the actual behavior of practical RIS elements, where it is shown that a uniform phase shift assumption is not realistic. A problem is formulated to find the optimal refection amplitudes and reflection phase shifts of the RIS elements such that the channel capacity of the target user is maximized. We first prove that in the optimal configuration, each RIS element is either turned off or operates at maximum amplitude. We then develop a method that finds the optimal reflection amplitudes and phases with complexity linear in the number of RIS elements. Some new and interesting insight into the reflection optimization problem is also provided.
Abstract:Federated learning (FL) has emerged as an appealing machine learning approach to deal with massive raw data generated at multiple mobile devices, {which needs to aggregate the training model parameter of every mobile device at one base station (BS) iteratively}. For parameter aggregating in FL, over-the-air computation is a spectrum-efficient solution, which allows all mobile devices to transmit their parameter-mapped signals concurrently to a BS. Due to heterogeneous channel fading and noise, there exists difference between the BS's received signal and its desired signal, measured as the mean-squared error (MSE). To minimize the MSE, we propose to jointly optimize the signal amplification factors at the BS and the mobile devices as well as the data size (the number of data samples involved in local training) at every mobile device. The formulated problem is challenging to solve due to its non-convexity. To find the optimal solution, with some simplification on cost function and variable replacement, which still preserves equivalence, we transform the changed problem to be a bi-level problem equivalently. For the lower-level problem, optimal solution is found by enumerating every candidate solution from the Karush-Kuhn-Tucker (KKT) condition. For the upper-level problem, the optimal solution is found by exploring its piecewise convexity. Numerical results show that our proposed method can greatly reduce the MSE and can help to improve the training performance of FL compared with benchmark methods.
Abstract:In this paper, we propose an iterative framework, which consists of two phases: a generation phase and a training phase, to generate realistic training data and yield a supervised homography network. In the generation phase, given an unlabeled image pair, we utilize the pre-estimated dominant plane masks and homography of the pair, along with another sampled homography that serves as ground truth to generate a new labeled training pair with realistic motion. In the training phase, the generated data is used to train the supervised homography network, in which the training data is refined via a content consistency module and a quality assessment module. Once an iteration is finished, the trained network is used in the next data generation phase to update the pre-estimated homography. Through such an iterative strategy, the quality of the dataset and the performance of the network can be gradually and simultaneously improved. Experimental results show that our method achieves state-of-the-art performance and existing supervised methods can be also improved based on the generated dataset. Code and dataset are available at https://github.com/JianghaiSCU/RealSH.