Alert button
Picture for Greg S Corrado

Greg S Corrado

Alert button

Predicting Risk of Developing Diabetic Retinopathy using Deep Learning

Aug 10, 2020
Ashish Bora, Siva Balasubramanian, Boris Babenko, Sunny Virmani, Subhashini Venugopalan, Akinori Mitani, Guilherme de Oliveira Marinho, Jorge Cuadros, Paisan Ruamviboonsuk, Greg S Corrado, Lily Peng, Dale R Webster, Avinash V Varadarajan, Naama Hammel, Yun Liu, Pinal Bavishi

Figure 1 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 2 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 3 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 4 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning

Diabetic retinopathy (DR) screening is instrumental in preventing blindness, but faces a scaling challenge as the number of diabetic patients rises. Risk stratification for the development of DR may help optimize screening intervals to reduce costs while improving vision-related outcomes. We created and validated two versions of a deep learning system (DLS) to predict the development of mild-or-worse ("Mild+") DR in diabetic patients undergoing DR screening. The two versions used either three-fields or a single field of color fundus photographs (CFPs) as input. The training set was derived from 575,431 eyes, of which 28,899 had known 2-year outcome, and the remaining were used to augment the training process via multi-task learning. Validation was performed on both an internal validation set (set A; 7,976 eyes; 3,678 with known outcome) and an external validation set (set B; 4,762 eyes; 2,345 with known outcome). For predicting 2-year development of DR, the 3-field DLS had an area under the receiver operating characteristic curve (AUC) of 0.79 (95%CI, 0.78-0.81) on validation set A. On validation set B (which contained only a single field), the 1-field DLS's AUC was 0.70 (95%CI, 0.67-0.74). The DLS was prognostic even after adjusting for available risk factors (p<0.001). When added to the risk factors, the 3-field DLS improved the AUC from 0.72 (95%CI, 0.68-0.76) to 0.81 (95%CI, 0.77-0.84) in validation set A, and the 1-field DLS improved the AUC from 0.62 (95%CI, 0.58-0.66) to 0.71 (95%CI, 0.68-0.75) in validation set B. The DLSs in this study identified prognostic information for DR development from CFPs. This information is independent of and more informative than the available risk factors.

Viaarxiv icon

Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

Oct 18, 2018
Avinash Varadarajan, Pinal Bavishi, Paisan Raumviboonsuk, Peranut Chotcomwongse, Subhashini Venugopalan, Arunachalam Narayanaswamy, Jorge Cuadros, Kuniyoshi Kanai, George Bresnick, Mongkol Tadarati, Sukhum Silpa-archa, Jirawut Limwattanayingyong, Variya Nganthavee, Joe Ledsam, Pearse A Keane, Greg S Corrado, Lily Peng, Dale R Webster

Figure 1 for Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
Figure 2 for Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
Figure 3 for Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning
Figure 4 for Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning

Diabetic eye disease is one of the fastest growing causes of preventable blindness. With the advent of anti-VEGF (vascular endothelial growth factor) therapies, it has become increasingly important to detect center-involved diabetic macular edema. However, center-involved diabetic macular edema is diagnosed using optical coherence tomography (OCT), which is not generally available at screening sites because of cost and workflow constraints. Instead, screening programs rely on the detection of hard exudates as a proxy for DME on color fundus photographs, often resulting in high false positive or false negative calls. To improve the accuracy of DME screening, we trained a deep learning model to use color fundus photographs to predict DME grades derived from OCT exams. Our "OCT-DME" model had an AUC of 0.89 (95% CI: 0.87-0.91), which corresponds to a sensitivity of 85% at a specificity of 80%. In comparison, three retinal specialists had similar sensitivities (82-85%), but only half the specificity (45-50%, p<0.001 for each comparison with model). The positive predictive value (PPV) of the OCT-DME model was 61% (95% CI: 56-66%), approximately double the 36-38% by the retina specialists. In addition, we used saliency and other techniques to examine how the model is making its prediction. The ability of deep learning algorithms to make clinically relevant predictions that generally require sophisticated 3D-imaging equipment from simple 2D images has broad relevance to many other applications in medical imaging.

Viaarxiv icon

Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program

Oct 18, 2018
Paisan Raumviboonsuk, Jonathan Krause, Peranut Chotcomwongse, Rory Sayres, Rajiv Raman, Kasumi Widner, Bilson J L Campana, Sonia Phene, Kornwipa Hemarat, Mongkol Tadarati, Sukhum Silpa-Acha, Jirawut Limwattanayingyong, Chetan Rao, Oscar Kuruvilla, Jesse Jung, Jeffrey Tan, Surapong Orprayoon, Chawawat Kangwanwongpaisan, Ramase Sukulmalpaiboon, Chainarong Luengchaichawang, Jitumporn Fuangkaew, Pipat Kongsap, Lamyong Chualinpha, Sarawuth Saree, Srirat Kawinpanitan, Korntip Mitvongsa, Siriporn Lawanasakol, Chaiyasit Thepchatri, Lalita Wongpichedchai, Greg S Corrado, Lily Peng, Dale R Webster

Figure 1 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 2 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 3 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 4 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program

Deep learning algorithms have been used to detect diabetic retinopathy (DR) with specialist-level accuracy. This study aims to validate one such algorithm on a large-scale clinical population, and compare the algorithm performance with that of human graders. 25,326 gradable retinal images of patients with diabetes from the community-based, nation-wide screening program of DR in Thailand were analyzed for DR severity and referable diabetic macular edema (DME). Grades adjudicated by a panel of international retinal specialists served as the reference standard. Across different severity levels of DR for determining referable disease, deep learning significantly reduced the false negative rate (by 23%) at the cost of slightly higher false positive rates (2%). Deep learning algorithms may serve as a valuable tool for DR screening.

Viaarxiv icon