Alert button
Picture for Rajiv Raman

Rajiv Raman

Alert button

Underspecification Presents Challenges for Credibility in Modern Machine Learning

Nov 06, 2020
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley

Figure 1 for Underspecification Presents Challenges for Credibility in Modern Machine Learning
Figure 2 for Underspecification Presents Challenges for Credibility in Modern Machine Learning
Figure 3 for Underspecification Presents Challenges for Credibility in Modern Machine Learning
Figure 4 for Underspecification Presents Challenges for Credibility in Modern Machine Learning
Viaarxiv icon

Quantitative and Qualitative Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis

Sep 26, 2020
Amitojdeep Singh, J. Jothi Balaji, Varadharajan Jayakumar, Mohammed Abdul Rasheed, Rajiv Raman, Vasudevan Lakshminarayanan

Figure 1 for Quantitative and Qualitative Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis
Figure 2 for Quantitative and Qualitative Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis
Figure 3 for Quantitative and Qualitative Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis
Figure 4 for Quantitative and Qualitative Evaluation of Explainable Deep Learning Methods for Ophthalmic Diagnosis
Viaarxiv icon

Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program

Oct 18, 2018
Paisan Raumviboonsuk, Jonathan Krause, Peranut Chotcomwongse, Rory Sayres, Rajiv Raman, Kasumi Widner, Bilson J L Campana, Sonia Phene, Kornwipa Hemarat, Mongkol Tadarati, Sukhum Silpa-Acha, Jirawut Limwattanayingyong, Chetan Rao, Oscar Kuruvilla, Jesse Jung, Jeffrey Tan, Surapong Orprayoon, Chawawat Kangwanwongpaisan, Ramase Sukulmalpaiboon, Chainarong Luengchaichawang, Jitumporn Fuangkaew, Pipat Kongsap, Lamyong Chualinpha, Sarawuth Saree, Srirat Kawinpanitan, Korntip Mitvongsa, Siriporn Lawanasakol, Chaiyasit Thepchatri, Lalita Wongpichedchai, Greg S Corrado, Lily Peng, Dale R Webster

Figure 1 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 2 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 3 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Figure 4 for Deep Learning vs. Human Graders for Classifying Severity Levels of Diabetic Retinopathy in a Real-World Nationwide Screening Program
Viaarxiv icon