Alert button
Picture for Boris Babenko

Boris Babenko

Alert button

Orbital Insight

Using generative AI to investigate medical imagery models and datasets

Jun 01, 2023
Oran Lang, Doron Yaya-Stupp, Ilana Traynis, Heather Cole-Lewis, Chloe R. Bennett, Courtney Lyles, Charles Lau, Christopher Semturs, Dale R. Webster, Greg S. Corrado, Avinatan Hassidim, Yossi Matias, Yun Liu, Naama Hammel, Boris Babenko

Figure 1 for Using generative AI to investigate medical imagery models and datasets
Figure 2 for Using generative AI to investigate medical imagery models and datasets
Figure 3 for Using generative AI to investigate medical imagery models and datasets
Figure 4 for Using generative AI to investigate medical imagery models and datasets
Viaarxiv icon

Discovering novel systemic biomarkers in photos of the external eye

Jul 19, 2022
Boris Babenko, Ilana Traynis, Christina Chen, Preeti Singh, Akib Uddin, Jorge Cuadros, Lauren P. Daskivich, April Y. Maa, Ramasamy Kim, Eugene Yu-Chuan Kang, Yossi Matias, Greg S. Corrado, Lily Peng, Dale R. Webster, Christopher Semturs, Jonathan Krause, Avinash V. Varadarajan, Naama Hammel, Yun Liu

Figure 1 for Discovering novel systemic biomarkers in photos of the external eye
Figure 2 for Discovering novel systemic biomarkers in photos of the external eye
Figure 3 for Discovering novel systemic biomarkers in photos of the external eye
Viaarxiv icon

Robust and Efficient Medical Imaging with Self-Supervision

May 19, 2022
Shekoofeh Azizi, Laura Culp, Jan Freyberg, Basil Mustafa, Sebastien Baur, Simon Kornblith, Ting Chen, Patricia MacWilliams, S. Sara Mahdavi, Ellery Wulczyn, Boris Babenko, Megan Wilson, Aaron Loh, Po-Hsuan Cameron Chen, Yuan Liu, Pinal Bavishi, Scott Mayer McKinney, Jim Winkens, Abhijit Guha Roy, Zach Beaver, Fiona Ryan, Justin Krogue, Mozziyar Etemadi, Umesh Telang, Yun Liu, Lily Peng, Greg S. Corrado, Dale R. Webster, David Fleet, Geoffrey Hinton, Neil Houlsby, Alan Karthikesalingam, Mohammad Norouzi, Vivek Natarajan

Figure 1 for Robust and Efficient Medical Imaging with Self-Supervision
Figure 2 for Robust and Efficient Medical Imaging with Self-Supervision
Figure 3 for Robust and Efficient Medical Imaging with Self-Supervision
Figure 4 for Robust and Efficient Medical Imaging with Self-Supervision
Viaarxiv icon

Detecting hidden signs of diabetes in external eye photographs

Nov 23, 2020
Boris Babenko, Akinori Mitani, Ilana Traynis, Naho Kitade, Preeti Singh, April Maa, Jorge Cuadros, Greg S. Corrado, Lily Peng, Dale R. Webster, Avinash Varadarajan, Naama Hammel, Yun Liu

Figure 1 for Detecting hidden signs of diabetes in external eye photographs
Figure 2 for Detecting hidden signs of diabetes in external eye photographs
Figure 3 for Detecting hidden signs of diabetes in external eye photographs
Figure 4 for Detecting hidden signs of diabetes in external eye photographs
Viaarxiv icon

Predicting Risk of Developing Diabetic Retinopathy using Deep Learning

Aug 10, 2020
Ashish Bora, Siva Balasubramanian, Boris Babenko, Sunny Virmani, Subhashini Venugopalan, Akinori Mitani, Guilherme de Oliveira Marinho, Jorge Cuadros, Paisan Ruamviboonsuk, Greg S Corrado, Lily Peng, Dale R Webster, Avinash V Varadarajan, Naama Hammel, Yun Liu, Pinal Bavishi

Figure 1 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 2 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 3 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Figure 4 for Predicting Risk of Developing Diabetic Retinopathy using Deep Learning
Viaarxiv icon

Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning

Apr 10, 2019
Boris Babenko, Siva Balasubramanian, Katy E. Blumer, Greg S. Corrado, Lily Peng, Dale R. Webster, Naama Hammel, Avinash V. Varadarajan

Figure 1 for Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning
Figure 2 for Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning
Figure 3 for Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning
Figure 4 for Predicting Progression of Age-related Macular Degeneration from Fundus Images using Deep Learning
Viaarxiv icon

Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico

Nov 16, 2017
Boris Babenko, Jonathan Hersh, David Newhouse, Anusha Ramakrishnan, Tom Swartz

Figure 1 for Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico
Figure 2 for Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico
Figure 3 for Poverty Mapping Using Convolutional Neural Networks Trained on High and Medium Resolution Satellite Images, With an Application in Mexico
Viaarxiv icon