Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Underspecification Presents Challenges for Credibility in Modern Machine Learning

Nov 06, 2020
Alexander D'Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D. Hoffman, Farhad Hormozdiari, Neil Houlsby, Shaobo Hou, Ghassen Jerfel, Alan Karthikesalingam, Mario Lucic, Yian Ma, Cory McLean, Diana Mincu, Akinori Mitani, Andrea Montanari, Zachary Nado, Vivek Natarajan, Christopher Nielson, Thomas F. Osborne, Rajiv Raman, Kim Ramasamy, Rory Sayres, Jessica Schrouff, Martin Seneviratne, Shannon Sequeira, Harini Suresh, Victor Veitch, Max Vladymyrov, Xuezhi Wang, Kellie Webster, Steve Yadlowsky, Taedong Yun, Xiaohua Zhai, D. Sculley


  Access Paper or Ask Questions

tfp.mcmc: Modern Markov Chain Monte Carlo Tools Built for Modern Hardware

Feb 04, 2020
Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel Sountsov, Dave Moore, Rif A. Saurous, Matthew D. Hoffman, Joshua V. Dillon

* Based on extended abstract submitted to PROBPROG 2020 

  Access Paper or Ask Questions

Automatically Batching Control-Intensive Programs for Modern Accelerators

Oct 23, 2019
Alexey Radul, Brian Patton, Dougal Maclaurin, Matthew D. Hoffman, Rif A. Saurous

* 10 pages; under review for Systems and Machine Learning 2020 

  Access Paper or Ask Questions

Automatic Reparameterisation of Probabilistic Programs

Jun 07, 2019
Maria I. Gorinova, Dave Moore, Matthew D. Hoffman


  Access Paper or Ask Questions

Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language

Nov 29, 2018
Matthew D. Hoffman, Matthew J. Johnson, Dustin Tran

* Appears in Neural Information Processing Systems, 2018. Code available at https://github.com/google-research/autoconj 

  Access Paper or Ask Questions

The LORACs prior for VAEs: Letting the Trees Speak for the Data

Oct 16, 2018
Sharad Vikram, Matthew D. Hoffman, Matthew J. Johnson


  Access Paper or Ask Questions

Music Transformer

Oct 10, 2018
Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman, Monica Dinculescu, Douglas Eck

* Rewrote many sections to clarify the work, and extended relative attention to the local case. Previous title is "An Improved Relative Self-Attention Mechanism for Transformer with Application to Music Generation" 

  Access Paper or Ask Questions

Generalizing Hamiltonian Monte Carlo with Neural Networks

Mar 02, 2018
Daniel Levy, Matthew D. Hoffman, Jascha Sohl-Dickstein

* ICLR 2018 

  Access Paper or Ask Questions

Variational Autoencoders for Collaborative Filtering

Feb 16, 2018
Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, Tony Jebara

* 10 pages, 3 figures. WWW 2018 

  Access Paper or Ask Questions

Stochastic Gradient Descent as Approximate Bayesian Inference

Jan 19, 2018
Stephan Mandt, Matthew D. Hoffman, David M. Blei

* Journal of Machine Learning Research 18 (2017) 1-35 
* 35 pages, published version (JMLR 2017) 

  Access Paper or Ask Questions

Multimodal Prediction and Personalization of Photo Edits with Deep Generative Models

Apr 17, 2017
Ardavan Saeedi, Matthew D. Hoffman, Stephen J. DiVerdi, Asma Ghandeharioun, Matthew J. Johnson, Ryan P. Adams


  Access Paper or Ask Questions

Deep Probabilistic Programming

Mar 07, 2017
Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei

* Appears in International Conference on Learning Representations, 2017. A companion webpage for this paper is available at http://edwardlib.org/iclr2017 

  Access Paper or Ask Questions

A Variational Analysis of Stochastic Gradient Algorithms

Feb 08, 2016
Stephan Mandt, Matthew D. Hoffman, David M. Blei

* International Conference on Machine Learning (ICML 2016), p. 354--363 
* 8 pages, 3 figures 

  Access Paper or Ask Questions

A trust-region method for stochastic variational inference with applications to streaming data

May 28, 2015
Lucas Theis, Matthew D. Hoffman

* in Proceedings of the 32nd International Conference on Machine Learning, 2015 

  Access Paper or Ask Questions

Beta Process Non-negative Matrix Factorization with Stochastic Structured Mean-Field Variational Inference

Dec 02, 2014
Dawen Liang, Matthew D. Hoffman

* 6 pages, 1 figure 

  Access Paper or Ask Questions

Structured Stochastic Variational Inference

Nov 26, 2014
Matthew D. Hoffman, David M. Blei


  Access Paper or Ask Questions

A Generative Product-of-Filters Model of Audio

Nov 25, 2014
Dawen Liang, Matthew D. Hoffman, Gautham J. Mysore

* ICLR 2014 conference-track submission. Added link to the source code 

  Access Paper or Ask Questions

Image Classification and Retrieval from User-Supplied Tags

Nov 25, 2014
Hamid Izadinia, Ali Farhadi, Aaron Hertzmann, Matthew D. Hoffman


  Access Paper or Ask Questions

The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo

Nov 18, 2011
Matthew D. Hoffman, Andrew Gelman

* 30 pages, 7 figures 

  Access Paper or Ask Questions

Approximate Maximum A Posteriori Inference with Entropic Priors

Sep 29, 2010
Matthew D. Hoffman


  Access Paper or Ask Questions