Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Motivated by the recent discovery of a statistical and computational reduction from contextual bandits to offline regression (Simchi-Levi and Xu, 2021), we address the general (stochastic) Contextual Markov Decision Process (CMDP) problem with horizon H (as known as CMDP with H layers). In this paper, we introduce a reduction from CMDPs to offline density estimation under the realizability assumption, i.e., a model class M containing the true underlying CMDP is provided in advance. We develop an efficient, statistically near-optimal algorithm requiring only O(HlogT) calls to an offline density estimation algorithm (or oracle) across all T rounds of interaction. This number can be further reduced to O(HloglogT) if T is known in advance. Our results mark the first efficient and near-optimal reduction from CMDPs to offline density estimation without imposing any structural assumptions on the model class. A notable feature of our algorithm is the design of a layerwise exploration-exploitation tradeoff tailored to address the layerwise structure of CMDPs. Additionally, our algorithm is versatile and applicable to pure exploration tasks in reward-free reinforcement learning.

Via

Contextual bandit with linear reward functions is among one of the most extensively studied models in bandit and online learning research. Recently, there has been increasing interest in designing \emph{locally private} linear contextual bandit algorithms, where sensitive information contained in contexts and rewards is protected against leakage to the general public. While the classical linear contextual bandit algorithm admits cumulative regret upper bounds of $\tilde O(\sqrt{T})$ via multiple alternative methods, it has remained open whether such regret bounds are attainable in the presence of local privacy constraints, with the state-of-the-art result being $\tilde O(T^{3/4})$. In this paper, we show that it is indeed possible to achieve an $\tilde O(\sqrt{T})$ regret upper bound for locally private linear contextual bandit. Our solution relies on several new algorithmic and analytical ideas, such as the analysis of mean absolute deviation errors and layered principal component regression in order to achieve small mean absolute deviation errors.

Via

We consider the problem of online local false discovery rate (FDR) control where multiple tests are conducted sequentially, with the goal of maximizing the total expected number of discoveries. We formulate the problem as an online resource allocation problem with accept/reject decisions, which from a high level can be viewed as an online knapsack problem, with the additional uncertainty of random budget replenishment. We start with general arrival distributions and propose a simple policy that achieves a $O(\sqrt{T})$ regret. We complement the result by showing that such regret rate is in general not improvable. We then shift our focus to discrete arrival distributions. We find that many existing re-solving heuristics in the online resource allocation literature, albeit achieve bounded loss in canonical settings, may incur a $\Omega(\sqrt{T})$ or even a $\Omega(T)$ regret. With the observation that canonical policies tend to be too optimistic and over accept arrivals, we propose a novel policy that incorporates budget buffers. We show that small additional logarithmic buffers suffice to reduce the regret from $\Omega(\sqrt{T})$ or even $\Omega(T)$ to $O(\ln^2 T)$. Numerical experiments are conducted to validate our theoretical findings. Our formulation may have wider applications beyond the problem considered in this paper, and our results emphasize how effective policies should be designed to reach a balance between circumventing wrong accept and reducing wrong reject in online resource allocation problems with uncertain budgets.

Via

Adaptive experiment is widely adopted to estimate conditional average treatment effect (CATE) in clinical trials and many other scenarios. While the primary goal in experiment is to maximize estimation accuracy, due to the imperative of social welfare, it's also crucial to provide treatment with superior outcomes to patients, which is measured by regret in contextual bandit framework. These two objectives often lead to contrast optimal allocation mechanism. Furthermore, privacy concerns arise in clinical scenarios containing sensitive data like patients health records. Therefore, it's essential for the treatment allocation mechanism to incorporate robust privacy protection measures. In this paper, we investigate the tradeoff between loss of social welfare and statistical power in contextual bandit experiment. We propose a matched upper and lower bound for the multi-objective optimization problem, and then adopt the concept of Pareto optimality to mathematically characterize the optimality condition. Furthermore, we propose differentially private algorithms which still matches the lower bound, showing that privacy is "almost free". Additionally, we derive the asymptotic normality of the estimator, which is essential in statistical inference and hypothesis testing.

Via

This paper introduces a novel contextual bandit algorithm for personalized pricing under utility fairness constraints in scenarios with uncertain demand, achieving an optimal regret upper bound. Our approach, which incorporates dynamic pricing and demand learning, addresses the critical challenge of fairness in pricing strategies. We first delve into the static full-information setting to formulate an optimal pricing policy as a constrained optimization problem. Here, we propose an approximation algorithm for efficiently and approximately computing the ideal policy. We also use mathematical analysis and computational studies to characterize the structures of optimal contextual pricing policies subject to fairness constraints, deriving simplified policies which lays the foundations of more in-depth research and extensions. Further, we extend our study to dynamic pricing problems with demand learning, establishing a non-standard regret lower bound that highlights the complexity added by fairness constraints. Our research offers a comprehensive analysis of the cost of fairness and its impact on the balance between utility and revenue maximization. This work represents a step towards integrating ethical considerations into algorithmic efficiency in data-driven dynamic pricing.

Via

We study the trade-off between expectation and tail risk for regret distribution in the stochastic multi-armed bandit problem. We fully characterize the interplay among three desired properties for policy design: worst-case optimality, instance-dependent consistency, and light-tailed risk. We show how the order of expected regret exactly affects the decaying rate of the regret tail probability for both the worst-case and instance-dependent scenario. A novel policy is proposed to characterize the optimal regret tail probability for any regret threshold. Concretely, for any given $\alpha\in[1/2, 1)$ and $\beta\in[0, \alpha]$, our policy achieves a worst-case expected regret of $\tilde O(T^\alpha)$ (we call it $\alpha$-optimal) and an instance-dependent expected regret of $\tilde O(T^\beta)$ (we call it $\beta$-consistent), while enjoys a probability of incurring an $\tilde O(T^\delta)$ regret ($\delta\geq\alpha$ in the worst-case scenario and $\delta\geq\beta$ in the instance-dependent scenario) that decays exponentially with a polynomial $T$ term. Such decaying rate is proved to be best achievable. Moreover, we discover an intrinsic gap of the optimal tail rate under the instance-dependent scenario between whether the time horizon $T$ is known a priori or not. Interestingly, when it comes to the worst-case scenario, this gap disappears. Finally, we extend our proposed policy design to (1) a stochastic multi-armed bandit setting with non-stationary baseline rewards, and (2) a stochastic linear bandit setting. Our results reveal insights on the trade-off between regret expectation and regret tail risk for both worst-case and instance-dependent scenarios, indicating that more sub-optimality and inconsistency leave space for more light-tailed risk of incurring a large regret, and that knowing the planning horizon in advance can make a difference on alleviating tail risks.

Via

We design simple and optimal policies that ensure safety against heavy-tailed risk in the classical multi-armed bandit problem. We start by showing that some widely used policies such as the standard Upper Confidence Bound policy and the Thompson Sampling policy incur heavy-tailed risk; that is, the worst-case probability of incurring a linear regret slowly decays at a polynomial rate of $1/T$, where $T$ is the time horizon. We further show that this heavy-tailed risk exists for all "instance-dependent consistent" policies. To ensure safety against such heavy-tailed risk, for the two-armed bandit setting, we provide a simple policy design that (i) has the worst-case optimality for the expected regret at order $\tilde O(\sqrt{T})$ and (ii) has the worst-case tail probability of incurring a linear regret decay at an exponential rate $\exp(-\Omega(\sqrt{T}))$. We further prove that this exponential decaying rate of the tail probability is optimal across all policies that have worst-case optimality for the expected regret. Finally, we improve the policy design and analysis to the general $K$-armed bandit setting. We provide detailed characterization of the tail probability bound for any regret threshold under our policy design. Namely, the worst-case probability of incurring a regret larger than $x$ is upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$. Numerical experiments are conducted to illustrate the theoretical findings. Our results reveal insights on the incompatibility between consistency and light-tailed risk, whereas indicate that worst-case optimality on expected regret and light-tailed risk are compatible.

Via

In this paper, we propose a PAC-Bayesian \textit{a posteriori} parameter selection scheme for adaptive regularized regression in Hilbert scales under general, unknown source conditions. We demonstrate that our approach is adaptive to misspecification, and achieves the optimal learning rate under subgaussian noise. Unlike existing parameter selection schemes, the computational complexity of our approach is independent of sample size. We derive minimax adaptive rates for a new, broad class of Tikhonov-regularized learning problems under general, misspecified source conditions, that notably do not require any conventional a priori assumptions on kernel eigendecay. Using the theory of interpolation, we demonstrate that the spectrum of the Mercer operator can be inferred in the presence of "tight" $L^{\infty}$ embeddings of suitable Hilbert scales. Finally, we prove, that under a $\Delta_2$ condition on the smoothness index functions, our PAC-Bayesian scheme can indeed achieve minimax rates. We discuss applications of our approach to statistical inverse problems and oracle-efficient contextual bandit algorithms.

Via

We consider the offline reinforcement learning problem, where the aim is to learn a decision making policy from logged data. Offline RL -- particularly when coupled with (value) function approximation to allow for generalization in large or continuous state spaces -- is becoming increasingly relevant in practice, because it avoids costly and time-consuming online data collection and is well suited to safety-critical domains. Existing sample complexity guarantees for offline value function approximation methods typically require both (1) distributional assumptions (i.e., good coverage) and (2) representational assumptions (i.e., ability to represent some or all $Q$-value functions) stronger than what is required for supervised learning. However, the necessity of these conditions and the fundamental limits of offline RL are not well understood in spite of decades of research. This led Chen and Jiang (2019) to conjecture that concentrability (the most standard notion of coverage) and realizability (the weakest representation condition) alone are not sufficient for sample-efficient offline RL. We resolve this conjecture in the positive by proving that in general, even if both concentrability and realizability are satisfied, any algorithm requires sample complexity polynomial in the size of the state space to learn a non-trivial policy. Our results show that sample-efficient offline reinforcement learning requires either restrictive coverage conditions or representation conditions that go beyond supervised learning, and highlight a phenomenon called over-coverage which serves as a fundamental barrier for offline value function approximation methods. A consequence of our results for reinforcement learning with linear function approximation is that the separation between online and offline RL can be arbitrarily large, even in constant dimension.

Via

We consider a seller offering a large network of $N$ products over a time horizon of $T$ periods. The seller does not know the parameters of the products' linear demand model, and can dynamically adjust product prices to learn the demand model based on sales observations. The seller aims to minimize its pseudo-regret, i.e., the expected revenue loss relative to a clairvoyant who knows the underlying demand model. We consider a sparse set of demand relationships between products to characterize various connectivity properties of the product network. In particular, we study three different sparsity frameworks: (1) $L_0$ sparsity, which constrains the number of connections in the network, and (2) off-diagonal sparsity, which constrains the magnitude of cross-product price sensitivities, and (3) a new notion of spectral sparsity, which constrains the asymptotic decay of a similarity metric on network nodes. We propose a dynamic pricing-and-learning policy that combines the optimism-in-the-face-of-uncertainty and PAC-Bayesian approaches, and show that this policy achieves asymptotically optimal performance in terms of $N$ and $T$. We also show that in the case of spectral and off-diagonal sparsity, the seller can have a pseudo-regret linear in $N$, even when the network is dense.

Via