Abstract:Soft robotic manipulators with many degrees of freedom can carry out complex tasks safely around humans. However, manufacturing of soft robotic hands with several degrees of freedom requires a complex multi-step manual process, which significantly increases their cost. We present a design of a multi-material 15 DoF robotic hand with five fingers including an opposable thumb. Our design has 15 pneumatic actuators based on a series of hollow chambers that are driven by an external pressure system. The thumb utilizes rigid joints and the palm features internal rigid structure and soft skin. The design can be directly 3D printed using a multi-material additive manufacturing process without any assembly process and therefore our hand can be manufactured for less than 300 dollars. We test the hand in conjunction with a low-cost vision-based teleoperation system on different tasks.
Abstract:Parallel robots based on Handed Shearing Auxetics (HSAs) can implement complex motions using standard electric motors while maintaining the complete softness of the structure, thanks to specifically designed architected metamaterials. However, their control is especially challenging due to varying and coupled stiffness, shearing, non-affine terms in the actuation model, and underactuation. In this paper, we present a model-based control strategy for planar HSA robots enabling regulation in task space. We formulate equations of motion, show that they admit a collocated form, and design a P-satI-D feedback controller with compensation for elastic and gravitational forces. We experimentally identify and verify the proposed control strategy in closed loop.
Abstract:Game-theoretic motion planners are a powerful tool for the control of interactive multi-agent robot systems. Indeed, contrary to predict-then-plan paradigms, game-theoretic planners do not ignore the interactive nature of the problem, and simultaneously predict the behaviour of other agents while considering change in one's policy. This, however, comes at the expense of computational complexity, especially as the number of agents considered grows. In fact, planning with more than a handful of agents can quickly become intractable, disqualifying game-theoretic planners as possible candidates for large scale planning. In this paper, we propose a planning algorithm enabling the use of game-theoretic planners in robot systems with a large number of agents. Our planner is based on the reality of locality of information and thus deploys local games with a selected subset of agents in a receding horizon fashion to plan collision avoiding trajectories. We propose five different principled schemes for selecting game participants and compare their collision avoidance performance. We observe that the use of Control Barrier Functions for priority ranking is a potent solution to the player selection problem for motion planning.
Abstract:Developing autonomous agents that can interact with changing environments is an open challenge in machine learning. Robustness is particularly important in these settings as agents are often fit offline on expert demonstrations but deployed online where they must generalize to the closed feedback loop within the environment. In this work, we explore the application of recurrent neural networks to tasks of this nature and understand how a parameterization of their recurrent connectivity influences robustness in closed-loop settings. Specifically, we represent the recurrent connectivity as a function of rank and sparsity and show both theoretically and empirically that modulating these two variables has desirable effects on network dynamics. The proposed low-rank, sparse connectivity induces an interpretable prior on the network that proves to be most amenable for a class of models known as closed-form continuous-time neural networks (CfCs). We find that CfCs with fewer parameters can outperform their full-rank, fully-connected counterparts in the online setting under distribution shift. This yields memory-efficient and robust agents while opening a new perspective on how we can modulate network dynamics through connectivity.
Abstract:Many computations in robotics can be dramatically accelerated if the robot configuration space is described as a collection of simple sets. For example, recently developed motion planners rely on a convex decomposition of the free space to design collision-free trajectories using fast convex optimization. In this work, we present an efficient method for approximately covering complex configuration spaces with a small number of polytopes. The approach constructs a visibility graph using sampling and generates a clique cover of this graph to find clusters of samples that have mutual line of sight. These clusters are then inflated into large, full-dimensional, polytopes. We evaluate our method on a variety of robotic systems and show that it consistently covers larger portions of free configuration space, with fewer polytopes, and in a fraction of the time compared to previous methods.
Abstract:While parallel grippers and multi-fingered robotic hands are well developed and commonly used in structured settings, it remains a challenge in robotics to design a highly articulated robotic hand that can be comparable to human hands to handle various daily manipulation and grasping tasks. Dexterity usually requires more actuators but also leads to a more sophisticated mechanism design and is more expensive to fabricate and maintain. Soft materials are able to provide compliance and safety when interacting with the physical world but are hard to model. This work presents a hybrid bio-inspired robotic hand that combines soft matters and rigid elements. Sensing is integrated into the rigid bodies resulting in a simple way for pose estimation with high sensitivity. The proposed hand is in a modular structure allowing for rapid fabrication and programming. The fabrication process is carefully designed so that a full hand can be made with low-cost materials and assembled in an efficient manner. We demonstrate the dexterity of the hand by successfully performing human grasp types.
Abstract:This paper addresses the problem of safety-critical control for non-affine control systems. It has been shown that optimizing quadratic costs subject to state and control constraints can be sub-optimally reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs). Our recently proposed High Order CBFs (HOCBFs) can accommodate constraints of arbitrary relative degree. The main challenges in this approach are that it requires affine control dynamics and the solution of the CBF-based QP is sub-optimal since it is solved point-wise. To address these challenges, we incorporate higher-order CBFs into neural ordinary differential equation-based learning models as differentiable CBFs to guarantee safety for non-affine control systems. The differentiable CBFs are trainable in terms of their parameters, and thus, they can address the conservativeness of CBFs such that the system state will not stay unnecessarily far away from safe set boundaries. Moreover, the imitation learning model is capable of learning complex and optimal control policies that are usually intractable online. We illustrate the effectiveness of the proposed framework on LiDAR-based autonomous driving and compare it with existing methods.
Abstract:Tracking and following objects of interest is critical to several robotics use cases, ranging from industrial automation to logistics and warehousing, to healthcare and security. In this paper, we present a robotic system to detect, track, and follow any object in real-time. Our approach, dubbed ``follow anything'' (FAn), is an open-vocabulary and multimodal model -- it is not restricted to concepts seen at training time and can be applied to novel classes at inference time using text, images, or click queries. Leveraging rich visual descriptors from large-scale pre-trained models (foundation models), FAn can detect and segment objects by matching multimodal queries (text, images, clicks) against an input image sequence. These detected and segmented objects are tracked across image frames, all while accounting for occlusion and object re-emergence. We demonstrate FAn on a real-world robotic system (a micro aerial vehicle) and report its ability to seamlessly follow the objects of interest in a real-time control loop. FAn can be deployed on a laptop with a lightweight (6-8 GB) graphics card, achieving a throughput of 6-20 frames per second. To enable rapid adoption, deployment, and extensibility, we open-source all our code on our project webpage at https://github.com/alaamaalouf/FollowAnything . We also encourage the reader the watch our 5-minutes explainer video in this https://www.youtube.com/watch?v=6Mgt3EPytrw .
Abstract:The modern pervasiveness of large-scale deep neural networks (NNs) is driven by their extraordinary performance on complex problems but is also plagued by their sudden, unexpected, and often catastrophic failures, particularly on challenging scenarios. Existing algorithms that provide risk-awareness to NNs are complex and ad-hoc. Specifically, these methods require significant engineering changes, are often developed only for particular settings, and are not easily composable. Here we present capsa, a framework for extending models with risk-awareness. Capsa provides a methodology for quantifying multiple forms of risk and composing different algorithms together to quantify different risk metrics in parallel. We validate capsa by implementing state-of-the-art uncertainty estimation algorithms within the capsa framework and benchmarking them on complex perception datasets. We demonstrate capsa's ability to easily compose aleatoric uncertainty, epistemic uncertainty, and bias estimation together in a single procedure, and show how this approach provides a comprehensive awareness of NN risk.
Abstract:Robots are notoriously difficult to design because of complex interdependencies between their physical structure, sensory and motor layouts, and behavior. Despite this, almost every detail of every robot built to date has been manually determined by a human designer after several months or years of iterative ideation, prototyping, and testing. Inspired by evolutionary design in nature, the automated design of robots using evolutionary algorithms has been attempted for two decades, but it too remains inefficient: days of supercomputing are required to design robots in simulation that, when manufactured, exhibit desired behavior. Here we show for the first time de-novo optimization of a robot's structure to exhibit a desired behavior, within seconds on a single consumer-grade computer, and the manufactured robot's retention of that behavior. Unlike other gradient-based robot design methods, this algorithm does not presuppose any particular anatomical form; starting instead from a randomly-generated apodous body plan, it consistently discovers legged locomotion, the most efficient known form of terrestrial movement. If combined with automated fabrication and scaled up to more challenging tasks, this advance promises near instantaneous design, manufacture, and deployment of unique and useful machines for medical, environmental, vehicular, and space-based tasks.