Alert button
Picture for Colin Leong

Colin Leong

Alert button

JWSign: A Highly Multilingual Corpus of Bible Translations for more Diversity in Sign Language Processing

Nov 16, 2023
Shester Gueuwou, Sophie Siake, Colin Leong, Mathias Müller

Advancements in sign language processing have been hindered by a lack of sufficient data, impeding progress in recognition, translation, and production tasks. The absence of comprehensive sign language datasets across the world's sign languages has widened the gap in this field, resulting in a few sign languages being studied more than others, making this research area extremely skewed mostly towards sign languages from high-income countries. In this work we introduce a new large and highly multilingual dataset for sign language translation: JWSign. The dataset consists of 2,530 hours of Bible translations in 98 sign languages, featuring more than 1,500 individual signers. On this dataset, we report neural machine translation experiments. Apart from bilingual baseline systems, we also train multilingual systems, including some that take into account the typological relatedness of signed or spoken languages. Our experiments highlight that multilingual systems are superior to bilingual baselines, and that in higher-resource scenarios, clustering language pairs that are related improves translation quality.

* EMNLP 20223 (Findings) 
Viaarxiv icon

The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages

Apr 19, 2023
Vesa Akerman, David Baines, Damien Daspit, Ulf Hermjakob, Taeho Jang, Colin Leong, Michael Martin, Joel Mathew, Jonathan Robie, Marcus Schwarting

Figure 1 for The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages
Figure 2 for The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages
Figure 3 for The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages
Figure 4 for The eBible Corpus: Data and Model Benchmarks for Bible Translation for Low-Resource Languages

Efficiently and accurately translating a corpus into a low-resource language remains a challenge, regardless of the strategies employed, whether manual, automated, or a combination of the two. Many Christian organizations are dedicated to the task of translating the Holy Bible into languages that lack a modern translation. Bible translation (BT) work is currently underway for over 3000 extremely low resource languages. We introduce the eBible corpus: a dataset containing 1009 translations of portions of the Bible with data in 833 different languages across 75 language families. In addition to a BT benchmarking dataset, we introduce model performance benchmarks built on the No Language Left Behind (NLLB) neural machine translation (NMT) models. Finally, we describe several problems specific to the domain of BT and consider how the established data and model benchmarks might be used for future translation efforts. For a BT task trained with NLLB, Austronesian and Trans-New Guinea language families achieve 35.1 and 31.6 BLEU scores respectively, which spurs future innovations for NMT for low-resource languages in Papua New Guinea.

Viaarxiv icon

Adapting to the Low-Resource Double-Bind: Investigating Low-Compute Methods on Low-Resource African Languages

Mar 29, 2023
Colin Leong, Herumb Shandilya, Bonaventure F. P. Dossou, Atnafu Lambebo Tonja, Joel Mathew, Abdul-Hakeem Omotayo, Oreen Yousuf, Zainab Akinjobi, Chris Chinenye Emezue, Shamsudeen Muhammad, Steven Kolawole, Younwoo Choi, Tosin Adewumi

Figure 1 for Adapting to the Low-Resource Double-Bind: Investigating Low-Compute Methods on Low-Resource African Languages
Figure 2 for Adapting to the Low-Resource Double-Bind: Investigating Low-Compute Methods on Low-Resource African Languages

Many natural language processing (NLP) tasks make use of massively pre-trained language models, which are computationally expensive. However, access to high computational resources added to the issue of data scarcity of African languages constitutes a real barrier to research experiments on these languages. In this work, we explore the applicability of low-compute approaches such as language adapters in the context of this low-resource double-bind. We intend to answer the following question: do language adapters allow those who are doubly bound by data and compute to practically build useful models? Through fine-tuning experiments on African languages, we evaluate their effectiveness as cost-effective approaches to low-resource African NLP. Using solely free compute resources, our results show that language adapters achieve comparable performances to massive pre-trained language models which are heavy on computational resources. This opens the door to further experimentation and exploration on full-extent of language adapters capacities.

* Accepted to AfricaNLP workshop at ICLR2023 
Viaarxiv icon

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

Nov 09, 2022
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Karen Fort, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.

Viaarxiv icon

Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks

Oct 26, 2022
Colin Leong, Joshua Nemecek, Jacob Mansdorfer, Anna Filighera, Abraham Owodunni, Daniel Whitenack

Figure 1 for Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks
Figure 2 for Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks
Figure 3 for Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks
Figure 4 for Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks

We present Bloom Library, a linguistically diverse set of multimodal and multilingual datasets for language modeling, image captioning, visual storytelling, and speech synthesis/recognition. These datasets represent either the most, or among the most, multilingual datasets for each of the included downstream tasks. In total, the initial release of the Bloom Library datasets covers 363 languages across 32 language families. We train downstream task models for various languages represented in the data, showing the viability of the data for future work in low-resource, multimodal NLP and establishing the first known baselines for these downstream tasks in certain languages (e.g., Bisu [bzi], with an estimated population of 700 users). Some of these first-of-their-kind baselines are comparable to state-of-the-art performance for higher-resourced languages. The Bloom Library datasets are released under Creative Commons licenses on the Hugging Face datasets hub to catalyze more linguistically diverse research in the included downstream tasks.

* EMNLP 2022  
* 14 pages, 1 figure, 3 tables, accepted to and presented at EMNLP 2022 
Viaarxiv icon

BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus

Jul 07, 2022
Josh Meyer, David Ifeoluwa Adelani, Edresson Casanova, Alp Öktem, Daniel Whitenack Julian Weber, Salomon Kabongo, Elizabeth Salesky, Iroro Orife, Colin Leong, Perez Ogayo, Chris Emezue, Jonathan Mukiibi, Salomey Osei, Apelete Agbolo, Victor Akinode, Bernard Opoku, Samuel Olanrewaju, Jesujoba Alabi, Shamsuddeen Muhammad

Figure 1 for BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus
Figure 2 for BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus
Figure 3 for BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus
Figure 4 for BibleTTS: a large, high-fidelity, multilingual, and uniquely African speech corpus

BibleTTS is a large, high-quality, open speech dataset for ten languages spoken in Sub-Saharan Africa. The corpus contains up to 86 hours of aligned, studio quality 48kHz single speaker recordings per language, enabling the development of high-quality text-to-speech models. The ten languages represented are: Akuapem Twi, Asante Twi, Chichewa, Ewe, Hausa, Kikuyu, Lingala, Luganda, Luo, and Yoruba. This corpus is a derivative work of Bible recordings made and released by the Open.Bible project from Biblica. We have aligned, cleaned, and filtered the original recordings, and additionally hand-checked a subset of the alignments for each language. We present results for text-to-speech models with Coqui TTS. The data is released under a commercial-friendly CC-BY-SA license.

* Accepted to INTERSPEECH 2022 
Viaarxiv icon

A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation

May 04, 2022
David Ifeoluwa Adelani, Jesujoba Oluwadara Alabi, Angela Fan, Julia Kreutzer, Xiaoyu Shen, Machel Reid, Dana Ruiter, Dietrich Klakow, Peter Nabende, Ernie Chang, Tajuddeen Gwadabe, Freshia Sackey, Bonaventure F. P. Dossou, Chris Chinenye Emezue, Colin Leong, Michael Beukman, Shamsuddeen Hassan Muhammad, Guyo Dub Jarso, Oreen Yousuf, Andre Niyongabo Rubungo, Gilles Hacheme, Eric Peter Wairagala, Muhammad Umair Nasir, Benjamin Ayoade Ajibade, Tunde Oluwaseyi Ajayi, Yvonne Wambui Gitau, Jade Abbott, Mohamed Ahmed, Millicent Ochieng, Anuoluwapo Aremu, Perez Ogayo, Jonathan Mukiibi, Fatoumata Ouoba Kabore, Godson Koffi Kalipe, Derguene Mbaye, Allahsera Auguste Tapo, Victoire Memdjokam Koagne, Edwin Munkoh-Buabeng, Valencia Wagner, Idris Abdulmumin, Ayodele Awokoya, Happy Buzaaba, Blessing Sibanda, Andiswa Bukula, Sam Manthalu

Figure 1 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 2 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 3 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation
Figure 4 for A Few Thousand Translations Go a Long Way! Leveraging Pre-trained Models for African News Translation

Recent advances in the pre-training of language models leverage large-scale datasets to create multilingual models. However, low-resource languages are mostly left out in these datasets. This is primarily because many widely spoken languages are not well represented on the web and therefore excluded from the large-scale crawls used to create datasets. Furthermore, downstream users of these models are restricted to the selection of languages originally chosen for pre-training. This work investigates how to optimally leverage existing pre-trained models to create low-resource translation systems for 16 African languages. We focus on two questions: 1) How can pre-trained models be used for languages not included in the initial pre-training? and 2) How can the resulting translation models effectively transfer to new domains? To answer these questions, we create a new African news corpus covering 16 languages, of which eight languages are not part of any existing evaluation dataset. We demonstrate that the most effective strategy for transferring both to additional languages and to additional domains is to fine-tune large pre-trained models on small quantities of high-quality translation data.

* Accepted to NAACL 2022 
Viaarxiv icon

Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources

Jan 25, 2022
Angelina McMillan-Major, Zaid Alyafeai, Stella Biderman, Kimbo Chen, Francesco De Toni, Gérard Dupont, Hady Elsahar, Chris Emezue, Alham Fikri Aji, Suzana Ilić, Nurulaqilla Khamis, Colin Leong, Maraim Masoud, Aitor Soroa, Pedro Ortiz Suarez, Zeerak Talat, Daniel van Strien, Yacine Jernite

Figure 1 for Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
Figure 2 for Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
Figure 3 for Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
Figure 4 for Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources

In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.

* 8 pages plus appendix and references 
Viaarxiv icon

Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets

Mar 22, 2021
Isaac Caswell, Julia Kreutzer, Lisa Wang, Ahsan Wahab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Allahsera Tapo, Nishant Subramani, Artem Sokolov, Claytone Sikasote, Monang Setyawan, Supheakmungkol Sarin, Sokhar Samb, Benoît Sagot, Clara Rivera, Annette Rios, Isabel Papadimitriou, Salomey Osei, Pedro Javier Ortiz Suárez, Iroro Orife, Kelechi Ogueji, Rubungo Andre Niyongabo, Toan Q. Nguyen, Mathias Müller, André Müller, Shamsuddeen Hassan Muhammad, Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapiwanashe Matangira, Colin Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure F. P. Dossou, Sakhile Dlamini, Nisansa de Silva, Sakine Çabuk Ballı, Stella Biderman, Alessia Battisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime, Ayodele Awokoya, Duygu Ataman, Orevaoghene Ahia, Oghenefego Ahia, Sweta Agrawal, Mofetoluwa Adeyemi

Figure 1 for Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Figure 2 for Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Figure 3 for Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
Figure 4 for Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets

With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. However, to date there has been no systematic analysis of the quality of these publicly available datasets, or whether the datasets actually contain content in the languages they claim to represent. In this work, we manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4), and audit the correctness of language codes in a sixth (JW300). We find that lower-resource corpora have systematic issues: at least 15 corpora are completely erroneous, and a significant fraction contains less than 50% sentences of acceptable quality. Similarly, we find 82 corpora that are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-speakers of the languages in question, and supplement the human judgements with automatic analyses. Inspired by our analysis, we recommend techniques to evaluate and improve multilingual corpora and discuss the risks that come with low-quality data releases.

* 10 pages paper; 10 pages appendix; AfricaNLP 2021 
Viaarxiv icon