Abstract:3D Gaussian Splatting (3DGS) has recently gained significant attention for high-quality and efficient view synthesis, making it widely adopted in fields such as AR/VR, robotics, and autonomous driving. Despite its impressive algorithmic performance, real-time rendering on resource-constrained devices remains a major challenge due to tight power and area budgets. This paper presents an architecture-algorithm co-design to address these inefficiencies. First, we reveal substantial redundancy caused by repeated computation of common terms/expressions during the conventional rasterization. To resolve this, we propose axis-oriented rasterization, which pre-computes and reuses shared terms along both the X and Y axes through a dedicated hardware design, effectively reducing multiply-and-add (MAC) operations by up to 63%. Second, by identifying the resource and performance inefficiency of the sorting process, we introduce a novel neural sorting approach that predicts order-independent blending weights using an efficient neural network, eliminating the need for costly hardware sorters. A dedicated training framework is also proposed to improve its algorithmic stability. Third, to uniformly support rasterization and neural network inference, we design an efficient reconfigurable processing array that maximizes hardware utilization and throughput. Furthermore, we introduce a $\pi$-trajectory tile schedule, inspired by Morton encoding and Hilbert curve, to optimize Gaussian reuse and reduce memory access overhead. Comprehensive experiments demonstrate that the proposed design preserves rendering quality while achieving a speedup of $23.4\sim27.8\times$ and energy savings of $28.8\sim51.4\times$ compared to edge GPUs for real-world scenes. We plan to open-source our design to foster further development in this field.
Abstract:Recent advances in code generation have illuminated the potential of employing large language models (LLMs) for general-purpose programming languages such as Python and C++, opening new opportunities for automating software development and enhancing programmer productivity. The potential of LLMs in software programming has sparked significant interest in exploring automated hardware generation and automation. Although preliminary endeavors have been made to adopt LLMs in generating hardware description languages (HDLs), several challenges persist in this direction. First, the volume of available HDL training data is substantially smaller compared to that for software programming languages. Second, the pre-trained LLMs, mainly tailored for software code, tend to produce HDL designs that are more error-prone. Third, the generation of HDL requires a significantly higher number of tokens compared to software programming, leading to inefficiencies in cost and energy consumption. To tackle these challenges, this paper explores leveraging LLMs to generate High-Level Synthesis (HLS)-based hardware design. Although code generation for domain-specific programming languages is not new in the literature, we aim to provide experimental results, insights, benchmarks, and evaluation infrastructure to investigate the suitability of HLS over low-level HDLs for LLM-assisted hardware design generation. To achieve this, we first finetune pre-trained models for HLS-based hardware generation, using a collected dataset with text prompts and corresponding reference HLS designs. An LLM-assisted framework is then proposed to automate end-to-end hardware code generation, which also investigates the impact of chain-of-thought and feedback loops promoting techniques on HLS-design generation. Limited by the timeframe of this research, we plan to evaluate more advanced reasoning models in the future.