Jack
Abstract:Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.
Abstract:Contour based scene text detection methods have rapidly developed recently, but still suffer from inaccurate frontend contour initialization, multi-stage error accumulation, or deficient local information aggregation. To tackle these limitations, we propose a novel arbitrary-shaped scene text detection framework named CT-Net by progressive contour regression with contour transformers. Specifically, we first employ a contour initialization module that generates coarse text contours without any post-processing. Then, we adopt contour refinement modules to adaptively refine text contours in an iterative manner, which are beneficial for context information capturing and progressive global contour deformation. Besides, we propose an adaptive training strategy to enable the contour transformers to learn more potential deformation paths, and introduce a re-score mechanism that can effectively suppress false positives. Extensive experiments are conducted on four challenging datasets, which demonstrate the accuracy and efficiency of our CT-Net over state-of-the-art methods. Particularly, CT-Net achieves F-measure of 86.1 at 11.2 frames per second (FPS) and F-measure of 87.8 at 10.1 FPS for CTW1500 and Total-Text datasets, respectively.
Abstract:Existing research on task incremental learning in continual learning has primarily focused on preventing catastrophic forgetting (CF). Although several techniques have achieved learning with no CF, they attain it by letting each task monopolize a sub-network in a shared network, which seriously limits knowledge transfer (KT) and causes over-consumption of the network capacity, i.e., as more tasks are learned, the performance deteriorates. The goal of this paper is threefold: (1) overcoming CF, (2) encouraging KT, and (3) tackling the capacity problem. A novel technique (called SPG) is proposed that soft-masks (partially blocks) parameter updating in training based on the importance of each parameter to old tasks. Each task still uses the full network, i.e., no monopoly of any part of the network by any task, which enables maximum KT and reduction in capacity usage. To our knowledge, this is the first work that soft-masks a model at the parameter-level for continual learning. Extensive experiments demonstrate the effectiveness of SPG in achieving all three objectives. More notably, it attains significant transfer of knowledge not only among similar tasks (with shared knowledge) but also among dissimilar tasks (with little shared knowledge) while mitigating CF.
Abstract:This paper studies the challenging continual learning (CL) setting of Class Incremental Learning (CIL). CIL learns a sequence of tasks consisting of disjoint sets of concepts or classes. At any time, a single model is built that can be applied to predict/classify test instances of any classes learned thus far without providing any task related information for each test instance. Although many techniques have been proposed for CIL, they are mostly empirical. It has been shown recently that a strong CIL system needs a strong within-task prediction (WP) and a strong out-of-distribution (OOD) detection for each task. However, it is still not known whether CIL is actually learnable. This paper shows that CIL is learnable. Based on the theory, a new CIL algorithm is also proposed. Experimental results demonstrate its effectiveness.
Abstract:Despite the great success of pre-trained language models, it is still a challenge to use these models for continual learning, especially for the class-incremental learning (CIL) setting due to catastrophic forgetting (CF). This paper reports our finding that if we formulate CIL as a continual label generation problem, CF is drastically reduced and the generalizable representations of pre-trained models can be better retained. We thus propose a new CIL method (VAG) that also leverages the sparsity of vocabulary to focus the generation and creates pseudo-replay samples by using label semantics. Experimental results show that VAG outperforms baselines by a large margin.
Abstract:Existing continual learning (CL) research regards catastrophic forgetting (CF) as almost the only challenge. This paper argues for another challenge in class-incremental learning (CIL), which we call cross-task class discrimination (CTCD),~i.e., how to establish decision boundaries between the classes of the new task and old tasks with no (or limited) access to the old task data. CTCD is implicitly and partially dealt with by replay-based methods. A replay method saves a small amount of data (replay data) from previous tasks. When a batch of current task data arrives, the system jointly trains the new data and some sampled replay data. The replay data enables the system to partially learn the decision boundaries between the new classes and the old classes as the amount of the saved data is small. However, this paper argues that the replay approach also has a dynamic training bias issue which reduces the effectiveness of the replay data in solving the CTCD problem. A novel optimization objective with a gradient-based adaptive method is proposed to dynamically deal with the problem in the online CL process. Experimental results show that the new method achieves much better results in online CL.
Abstract:Sentiment analysis (SA) has been a long-standing research area in natural language processing. It can offer rich insights into human sentiments and opinions and has thus seen considerable interest from both academia and industry. With the advent of large language models (LLMs) such as ChatGPT, there is a great potential for their employment on SA problems. However, the extent to which existing LLMs can be leveraged for different sentiment analysis tasks remains unclear. This paper aims to provide a comprehensive investigation into the capabilities of LLMs in performing various sentiment analysis tasks, from conventional sentiment classification to aspect-based sentiment analysis and multifaceted analysis of subjective texts. We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets. Our study reveals that while LLMs demonstrate satisfactory performance in simpler tasks, they lag behind in more complex tasks requiring deeper understanding or structured sentiment information. However, LLMs significantly outperform SLMs in few-shot learning settings, suggesting their potential when annotation resources are limited. We also highlight the limitations of current evaluation practices in assessing LLMs' SA abilities and propose a novel benchmark, \textsc{SentiEval}, for a more comprehensive and realistic evaluation. Data and code during our investigations are available at \url{https://github.com/DAMO-NLP-SG/LLM-Sentiment}.
Abstract:As deep learning gains popularity in modelling dynamical systems, we expose an underappreciated misunderstanding relevant to modelling dynamics on networks. Strongly influenced by graph neural networks, latent vertex embeddings are naturally adopted in many neural dynamical network models. However, we show that embeddings tend to induce a model that fits observations well but simultaneously has incorrect dynamical behaviours. Recognising that previous studies narrowly focus on short-term predictions during the transient phase of a flow, we propose three tests for correct long-term behaviour, and illustrate how an embedding-based dynamical model fails these tests, and analyse the causes, particularly through the lens of topological conjugacy. In doing so, we show that the difficulties can be avoided by not using embedding. We propose a simple embedding-free alternative based on parametrising two additive vector-field components. Through extensive experiments, we verify that the proposed model can reliably recover a broad class of dynamics on different network topologies from time series data.
Abstract:Existing research has shown that a multilingual pre-trained language model fine-tuned with one (source) language also performs well on downstream tasks for non-source languages, even though no fine-tuning is done on these languages. However, there is a clear gap between the performance of the source language and that of the non-source languages. This paper analyzes the fine-tuning process, discovers when the performance gap changes and identifies which network weights affect the overall performance most. Additionally, the paper seeks to answer to what extent the gap can be reduced by reducing forgetting. Based on the analysis results, a method named Fine-tuning slow and fast with four training policies is proposed to address these issues. Experimental results show the proposed method outperforms baselines by a clear margin.
Abstract:State-of-the-art natural language processing models have been shown to achieve remarkable performance in 'closed-world' settings where all the labels in the evaluation set are known at training time. However, in real-world settings, 'novel' instances that do not belong to any known class are often observed. This renders the ability to deal with novelties crucial. To initiate a systematic research in this important area of 'dealing with novelties', we introduce 'NoveltyTask', a multi-stage task to evaluate a system's performance on pipelined novelty 'detection' and 'accommodation' tasks. We provide mathematical formulation of NoveltyTask and instantiate it with the authorship attribution task that pertains to identifying the correct author of a given text. We use Amazon reviews corpus and compile a large dataset (consisting of 250k instances across 200 authors/labels) for NoveltyTask. We conduct comprehensive experiments and explore several baseline methods for the task. Our results show that the methods achieve considerably low performance making the task challenging and leaving sufficient room for improvement. Finally, we believe our work will encourage research in this underexplored area of dealing with novelties, an important step en route to developing robust systems.