Jack
Abstract:This paper studies the problem of learning a sequence of sentiment classification tasks. The learned knowledge from each task is retained and used to help future or subsequent task learning. This learning paradigm is called Lifelong Learning (LL). However, existing LL methods either only transfer knowledge forward to help future learning and do not go back to improve the model of a previous task or require the training data of the previous task to retrain its model to exploit backward/reverse knowledge transfer. This paper studies reverse knowledge transfer of LL in the context of naive Bayesian (NB) classification. It aims to improve the model of a previous task by leveraging future knowledge without retraining using its training data. This is done by exploiting a key characteristic of the generative model of NB. That is, it is possible to improve the NB classifier for a task by improving its model parameters directly by using the retained knowledge from other tasks. Experimental results show that the proposed method markedly outperforms existing LL baselines.
Abstract:This paper focuses on two related subtasks of aspect-based sentiment analysis, namely aspect term extraction and aspect sentiment classification, which we call aspect term-polarity co-extraction. The former task is to extract aspects of a product or service from an opinion document, and the latter is to identify the polarity expressed in the document about these extracted aspects. Most existing algorithms address them as two separate tasks and solve them one by one, or only perform one task, which can be complicated for real applications. In this paper, we treat these two tasks as two sequence labeling problems and propose a novel Dual crOss-sharEd RNN framework (DOER) to generate all aspect term-polarity pairs of the input sentence simultaneously. Specifically, DOER involves a dual recurrent neural network to extract the respective representation of each task, and a cross-shared unit to consider the relationship between them. Experimental results demonstrate that the proposed framework outperforms state-of-the-art baselines on three benchmark datasets.
Abstract:Beyond existing multi-view clustering, this paper studies a more realistic clustering scenario, referred to as incomplete multi-view clustering, where a number of data instances are missing in certain views. To tackle this problem, we explore spectral perturbation theory. In this work, we show a strong link between perturbation risk bounds and incomplete multi-view clustering. That is, as the similarity matrix fed into spectral clustering is a quantity bounded in magnitude O(1), we transfer the missing problem from data to similarity and tailor a matrix completion method for incomplete similarity matrix. Moreover, we show that the minimization of perturbation risk bounds among different views maximizes the final fusion result across all views. This provides a solid fusion criteria for multi-view data. We motivate and propose a Perturbation-oriented Incomplete multi-view Clustering (PIC) method. Experimental results demonstrate the effectiveness of the proposed method.
Abstract:Existing neural models for dialogue response generation assume that utterances are sequentially organized. However, many real-world dialogues involve multiple interlocutors (i.e., multi-party dialogues), where the assumption does not hold as utterances from different interlocutors can occur "in parallel." This paper generalizes existing sequence-based models to a Graph-Structured neural Network (GSN) for dialogue modeling. The core of GSN is a graph-based encoder that can model the information flow along the graph-structured dialogues (two-party sequential dialogues are a special case). Experimental results show that GSN significantly outperforms existing sequence-based models.
Abstract:One key task of fine-grained sentiment analysis on reviews is to extract aspects or features that users have expressed opinions on. This paper focuses on supervised aspect extraction using a modified CNN called controlled CNN (Ctrl). The modified CNN has two types of control modules. Through asynchronous parameter updating, it prevents over-fitting and boosts CNN's performance significantly. This model achieves state-of-the-art results on standard aspect extraction datasets. To the best of our knowledge, this is the first paper to apply control modules to aspect extraction.
Abstract:Question-answering plays an important role in e-commerce as it allows potential customers to actively seek crucial information about products or services to help their purchase decision making. Inspired by the recent success of machine reading comprehension (MRC) on formal documents, this paper explores the potential of turning customer reviews into a large source of knowledge that can be exploited to answer user questions.~We call this problem Review Reading Comprehension (RRC). To the best of our knowledge, no existing work has been done on RRC. In this work, we first build an RRC dataset called ReviewRC based on a popular benchmark for aspect-based sentiment analysis. Since ReviewRC has limited training examples for RRC (and also for aspect-based sentiment analysis), we then explore a novel post-training approach on the popular language model BERT to enhance the performance of fine-tuning of BERT for RRC. To show the generality of the approach, the proposed post-training is also applied to some other review-based tasks such as aspect extraction and aspect sentiment classification in aspect-based sentiment analysis. Experimental results demonstrate that the proposed post-training is highly effective. The datasets and code are available at https://www.cs.uic.edu/~hxu/.
Abstract:Seeking information about products and services is an important activity of online consumers before making a purchase decision. Inspired by recent research on conversational reading comprehension (CRC) on formal documents, this paper studies the task of leveraging knowledge from a huge amount of reviews to answer multi-turn questions from consumers or users. Questions spanning multiple turns in a dialogue enables users to ask more specific questions that are hard to ask within a single question as in traditional machine reading comprehension (MRC). In this paper, we first build a dataset and then propose a novel task-adaptation approach to encoding the formulation of CRC task into a pre-trained language model. This task-adaptation approach is unsupervised and can greatly enhance the performance of the end CRC task that has only limited supervision. Experimental results show that the proposed approach is highly effective and has competitive performance as supervised approach. We plan to release the datasets and the code in May 2019.
Abstract:This paper aims to develop a new and robust approach to feature representation. Motivated by the success of Auto-Encoders, we first theoretical summarize the general properties of all algorithms that are based on traditional Auto-Encoders: 1) The reconstruction error of the input can not be lower than a lower bound, which can be viewed as a guiding principle for reconstructing the input. Additionally, when the input is corrupted with noises, the reconstruction error of the corrupted input also can not be lower than a lower bound. 2) The reconstruction of a hidden representation achieving its ideal situation is the necessary condition for the reconstruction of the input to reach the ideal state. 3) Minimizing the Frobenius norm of the Jacobian matrix of the hidden representation has a deficiency and may result in a much worse local optimum value. We believe that minimizing the reconstruction error of the hidden representation is more robust than minimizing the Frobenius norm of the Jacobian matrix of the hidden representation. Based on the above analysis, we propose a new model termed Double Denoising Auto-Encoders (DDAEs), which uses corruption and reconstruction on both the input and the hidden representation. We demonstrate that the proposed model is highly flexible and extensible and has a potentially better capability to learn invariant and robust feature representations. We also show that our model is more robust than Denoising Auto-Encoders (DAEs) for dealing with noises or inessential features. Furthermore, we detail how to train DDAEs with two different pre-training methods by optimizing the objective function in a combined and separate manner, respectively. Comparative experiments illustrate that the proposed model is significantly better for representation learning than the state-of-the-art models.
Abstract:Classic supervised learning makes the closed-world assumption, meaning that classes seen in testing must have been seen in training. However, in the dynamic world, new or unseen class examples may appear constantly. A model working in such an environment must be able to reject unseen classes (not seen or used in training). If enough data is collected for the unseen classes, the system should incrementally learn to accept/classify them. This learning paradigm is called open-world learning (OWL). Existing OWL methods all need some form of re-training to accept or include the new classes in the overall model. In this paper, we propose a meta-learning approach to the problem. Its key novelty is that it only needs to train a meta-classifier, which can then continually accept new classes when they have enough labeled data for the meta-classifier to use, and also detect/reject future unseen classes. No re-training of the meta-classifier or a new overall classifier covering all old and new classes is needed. In testing, the method only uses the examples of the seen classes (including the newly added classes) on-the-fly for classification and rejection. Experimental results demonstrate the effectiveness of the new approach.
Abstract:Perception and expression of emotion are key factors to the success of dialogue systems or conversational agents. However, this problem has not been studied in large-scale conversation generation so far. In this paper, we propose Emotional Chatting Machine (ECM) that can generate appropriate responses not only in content (relevant and grammatical) but also in emotion (emotionally consistent). To the best of our knowledge, this is the first work that addresses the emotion factor in large-scale conversation generation. ECM addresses the factor using three new mechanisms that respectively (1) models the high-level abstraction of emotion expressions by embedding emotion categories, (2) captures the change of implicit internal emotion states, and (3) uses explicit emotion expressions with an external emotion vocabulary. Experiments show that the proposed model can generate responses appropriate not only in content but also in emotion.