Jack
Abstract:This paper studies the problem of detecting novel or unexpected instances in text classification. In traditional text classification, the classes appeared in testing must have been seen in training. However, in many applications, this is not the case because in testing, we may see unexpected instances that are not from any of the training classes. In this paper, we propose a significantly more effective approach that converts the original problem to a pair-wise matching problem and then outputs how probable two instances belong to the same class. Under this approach, we present two models. The more effective model uses two embedding matrices of a pair of instances as two channels of a CNN. The output probabilities from such pairs are used to judge whether a test instance is from a seen class or is novel/unexpected. Experimental results show that the proposed method substantially outperforms the state-of-the-art baselines.
Abstract:Dialogue systems, also called chatbots, are now used in a wide range of applications. However, they still have some major weaknesses. One key weakness is that they are typically trained from manually-labeled data and/or written with handcrafted rules, and their knowledge bases (KBs) are also compiled by human experts. Due to the huge amount of manual effort involved, they are difficult to scale and also tend to produce many errors ought to their limited ability to understand natural language and the limited knowledge in their KBs. Thus, the level of user satisfactory is often low. In this paper, we propose to dramatically improve this situation by endowing the system the ability to continually learn (1) new world knowledge, (2) new language expressions to ground them to actions, and (3) new conversational skills, during conversation or "on the job" by themselves so that as the systems chat more and more with users, they become more and more knowledgeable and are better and better able to understand diverse natural language expressions and improve their conversational skills. A key approach to achieving these is to exploit the multi-user environment of such systems to self-learn through interactions with users via verb and non-verb means. The paper discusses not only key challenges and promising directions to learn from users during conversation but also how to ensure the correctness of the learned knowledge.
Abstract:Deep learning based methods have seen a massive rise in popularity for hyperspectral image classification over the past few years. However, the success of deep learning is attributed greatly to numerous labeled samples. It is still very challenging to use only a few labeled samples to train deep learning models to reach a high classification accuracy. An active deep-learning framework trained by an end-to-end manner is, therefore, proposed by this paper in order to minimize the hyperspectral image classification costs. First, a deep densely connected convolutional network is considered for hyperspectral image classification. Different from the traditional active learning methods, an additional network is added to the designed deep densely connected convolutional network to predict the loss of input samples. Then, the additional network could be used to suggest unlabeled samples that the deep densely connected convolutional network is more likely to produce a wrong label. Note that the additional network uses the intermediate features of the deep densely connected convolutional network as input. Therefore, the proposed method is an end-to-end framework. Subsequently, a few of the selected samples are labelled manually and added to the training samples. The deep densely connected convolutional network is therefore trained using the new training set. Finally, the steps above are repeated to train the whole framework iteratively. Extensive experiments illustrates that the method proposed could reach a high accuracy in classification after selecting just a few samples.
Abstract:We study a conversational recommendation model which dynamically manages users' past (offline) preferences and current (online) requests through a structured and cumulative user memory knowledge graph, to allow for natural interactions and accurate recommendations. For this study, we create a new Memory Graph (MG) <--> Conversational Recommendation parallel corpus called MGConvRex with 7K+ human-to-human role-playing dialogs, grounded on a large-scale user memory bootstrapped from real-world user scenarios. MGConvRex captures human-level reasoning over user memory and has disjoint training/testing sets of users for zero-shot (cold-start) reasoning for recommendation. We propose a simple yet expandable formulation for constructing and updating the MG, and a reasoning model that predicts optimal dialog policies and recommendation items in unconstrained graph space. The prediction of our proposed model inherits the graph structure, providing a natural way to explain the model's recommendation. Experiments are conducted for both offline metrics and online simulation, showing competitive results.
Abstract:Sentiment lexicons are instrumental for sentiment analysis. One can use a set of sentiment words provided in a sentiment lexicon and a lexicon-based classifier to perform sentiment classification. One major issue with this approach is that many sentiment words are domain dependent. That is, they may be positive in some domains but negative in some others. We refer to this problem as domain polarity-changes of words. Detecting such words and correcting their sentiment for an application domain is very important. In this paper, we propose a graph-based technique to tackle this problem. Experimental results show its effectiveness on multiple real-world datasets.
Abstract:This paper focuses on learning domain-oriented language models driven by end tasks, which aims to combine the worlds of both general-purpose language models (such as ELMo and BERT) and domain-specific language understanding. We propose DomBERT, an extension of BERT to learn from both in-domain corpus and relevant domain corpora. This helps in learning domain language models with low-resources. Experiments are conducted on an assortment of tasks in aspect-based sentiment analysis, demonstrating promising results.
Abstract:Sparsity is regarded as a desirable property of representations, especially in terms of explanation. However, its usage has been limited due to the gap with dense representations. Most NLP research progresses in recent years are based on dense representations. Thus the desirable property of sparsity cannot be leveraged. Inspired by Fourier Transformation, in this paper, we propose a novel Semantic Transformation method to bridge the dense and sparse spaces, which can facilitate the NLP research to shift from dense space to sparse space or to jointly use both spaces. The key idea of the proposed approach is to use a Forward Transformation to transform dense representations to sparse representations. Then some useful operations in the sparse space can be performed over the sparse representations, and the sparse representations can be used directly to perform downstream tasks such as text classification and natural language inference. Then, a Backward Transformation can also be carried out to transform those processed sparse representations to dense representations. Experiments using classification tasks and natural language inference task show that the proposed Semantic Transformation is effective.
Abstract:Aspect-based sentiment classification (ASC) is an important task in fine-grained sentiment analysis.~Deep supervised ASC approaches typically model this task as a pair-wise classification task that takes an aspect and a sentence containing the aspect and outputs the polarity of the aspect in that sentence. However, we discovered that many existing approaches fail to learn an effective ASC classifier but more like a sentence-level sentiment classifier because they have difficulty to handle sentences with different polarities for different aspects.~This paper first demonstrates this problem using several state-of-the-art ASC models. It then proposes a novel and general adaptive re-weighting (ARW) scheme to adjust the training to dramatically improve ASC for such complex sentences. Experimental results show that the proposed framework is effective \footnote{The dataset and code are available at \url{https://github.com/howardhsu/ASC_failure}.}.
Abstract:Traditional approaches to building natural language (NL) interfaces typically use a semantic parser to parse the user command and convert it to a logical form, which is then translated to an executable action in an application. However, it is still challenging for a semantic parser to correctly parse natural language. For a different domain, the parser may need to be retrained or tuned, and a new translator also needs to be written to convert the logical forms to executable actions. In this work, we propose a novel and application independent approach to building NL interfaces that does not need a semantic parser or a translator. It is based on natural language to natural language matching and learning, where the representation of each action and each user command are both in natural language. To perform a user intended action, the system only needs to match the user command with the correct action representation, and then execute the corresponding action. The system also interactively learns new (paraphrased) commands for actions to expand the action representations over time. Our experimental results show the effectiveness of the proposed approach.
Abstract:In this work, we study how the large-scale pretrain-finetune framework changes the behavior of a neural language generator. We focus on the transformer encoder-decoder model for the open-domain dialogue response generation task. We find that after standard fine-tuning, the model forgets important language generation skills acquired during large-scale pre-training. We demonstrate the forgetting phenomenon through a detailed behavior analysis from the perspectives of context sensitivity and knowledge transfer. Adopting the concept of data mixing, we propose an intuitive fine-tuning strategy named "mix-review". We find that mix-review effectively regularize the fine-tuning process, and the forgetting problem is largely alleviated. Finally, we discuss interesting behavior of the resulting dialogue model and its implications.