Abstract:Large Language Models (LLMs) are increasingly assisting users in the real world, yet their reliability remains a concern. Uncertainty quantification (UQ) has been heralded as a tool to enhance human-LLM collaboration by enabling users to know when to trust LLM predictions. We argue that current practices for uncertainty quantification in LLMs are not optimal for developing useful UQ for human users making decisions in real-world tasks. Through an analysis of 40 LLM UQ methods, we identify three prevalent practices hindering the community's progress toward its goal of benefiting downstream users: 1) evaluating on benchmarks with low ecological validity; 2) considering only epistemic uncertainty; and 3) optimizing metrics that are not necessarily indicative of downstream utility. For each issue, we propose concrete user-centric practices and research directions that LLM UQ researchers should consider. Instead of hill-climbing on unrepresentative tasks using imperfect metrics, we argue that the community should adopt a more human-centered approach to LLM uncertainty quantification.
Abstract:Adam is the de facto optimization algorithm for several deep learning applications, but an understanding of its implicit bias and how it differs from other algorithms, particularly standard first-order methods such as (stochastic) gradient descent (GD), remains limited. In practice, neural networks trained with SGD are known to exhibit simplicity bias -- a tendency to find simple solutions. In contrast, we show that Adam is more resistant to such simplicity bias. To demystify this phenomenon, in this paper, we investigate the differences in the implicit biases of Adam and GD when training two-layer ReLU neural networks on a binary classification task involving synthetic data with Gaussian clusters. We find that GD exhibits a simplicity bias, resulting in a linear decision boundary with a suboptimal margin, whereas Adam leads to much richer and more diverse features, producing a nonlinear boundary that is closer to the Bayes' optimal predictor. This richer decision boundary also allows Adam to achieve higher test accuracy both in-distribution and under certain distribution shifts. We theoretically prove these results by analyzing the population gradients. To corroborate our theoretical findings, we present empirical results showing that this property of Adam leads to superior generalization across datasets with spurious correlations where neural networks trained with SGD are known to show simplicity bias and don't generalize well under certain distributional shifts.
Abstract:In this paper, we consider the related problems of multicalibration -- a multigroup fairness notion and omniprediction -- a simultaneous loss minimization paradigm, both in the distributional and online settings. The recent work of Garg et al. (2024) raised the open problem of whether it is possible to efficiently achieve $O(\sqrt{T})$ $\ell_{2}$-multicalibration error against bounded linear functions. In this paper, we answer this question in a strongly affirmative sense. We propose an efficient algorithm that achieves $O(T^{\frac{1}{3}})$ $\ell_{2}$-swap multicalibration error (both in high probability and expectation). On propagating this bound onward, we obtain significantly improved rates for $\ell_{1}$-swap multicalibration and swap omniprediction for a loss class of convex Lipschitz functions. In particular, we show that our algorithm achieves $O(T^{\frac{2}{3}})$ $\ell_{1}$-swap multicalibration and swap omniprediction errors, thereby improving upon the previous best-known bound of $O(T^{\frac{7}{8}})$. As a consequence of our improved online results, we further obtain several improved sample complexity rates in the distributional setting. In particular, we establish a $O(\varepsilon ^ {-3})$ sample complexity of efficiently learning an $\varepsilon$-swap omnipredictor for the class of convex and Lipschitz functions, $O(\varepsilon ^{-2.5})$ sample complexity of efficiently learning an $\varepsilon$-swap agnostic learner for the squared loss, and $O(\varepsilon ^ {-5}), O(\varepsilon ^ {-2.5})$ sample complexities of learning $\ell_{1}, \ell_{2}$-swap multicalibrated predictors against linear functions, all of which significantly improve on the previous best-known bounds.
Abstract:Steering methods have emerged as effective and targeted tools for guiding large language models' (LLMs) behavior without modifying their parameters. Multimodal large language models (MLLMs), however, do not currently enjoy the same suite of techniques, due in part to their recency and architectural diversity. Inspired by this gap, we investigate whether MLLMs can be steered using vectors derived from their text-only LLM backbone, via sparse autoencoders (SAEs), mean shift, and linear probing. We find that text-derived steering consistently enhances multimodal accuracy across diverse MLLM architectures and visual tasks. In particular, mean shift boosts spatial relationship accuracy on CV-Bench by up to +7.3% and counting accuracy by up to +3.3%, outperforming prompting and exhibiting strong generalization to out-of-distribution datasets. These results highlight textual steering vectors as a powerful, efficient mechanism for enhancing grounding in MLLMs with minimal additional data collection and computational overhead.
Abstract:Calibration is a fundamental concept that aims at ensuring the reliability of probabilistic predictions by aligning them with real-world outcomes. There is a surge of studies on new calibration measures that are easier to optimize compared to the classical $\ell_1$-Calibration while still having strong implications for downstream applications. One recent such example is the work by Fishelson et al. (2025) who show that it is possible to achieve $O(T^{1/3})$ pseudo $\ell_2$-Calibration error via minimizing pseudo swap regret of the squared loss, which in fact implies the same bound for all bounded proper losses with a smooth univariate form. In this work, we significantly generalize their result in the following ways: (a) in addition to smooth univariate forms, our algorithm also simultaneously achieves $O(T^{1/3})$ swap regret for any proper loss with a twice continuously differentiable univariate form (such as Tsallis entropy); (b) our bounds hold not only for pseudo swap regret that measures losses using the forecaster's distributions on predictions, but also hold for the actual swap regret that measures losses using the forecaster's actual realized predictions. We achieve so by introducing a new stronger notion of calibration called (pseudo) KL-Calibration, which we show is equivalent to the (pseudo) swap regret for log loss. We prove that there exists an algorithm that achieves $O(T^{1/3})$ KL-Calibration error and provide an explicit algorithm that achieves $O(T^{1/3})$ pseudo KL-Calibration error. Moreover, we show that the same algorithm achieves $O(T^{1/3}(\log T)^{-1/3}\log(T/\delta))$ swap regret w.p. $\ge 1-\delta$ for any proper loss with a smooth univariate form, which implies $O(T^{1/3})$ $\ell_2$-Calibration error. A technical contribution of our work is a new randomized rounding procedure and a non-uniform discretization scheme to minimize the swap regret for log loss.
Abstract:We propose a general framework for end-to-end learning of data structures. Our framework adapts to the underlying data distribution and provides fine-grained control over query and space complexity. Crucially, the data structure is learned from scratch, and does not require careful initialization or seeding with candidate data structures/algorithms. We first apply this framework to the problem of nearest neighbor search. In several settings, we are able to reverse-engineer the learned data structures and query algorithms. For 1D nearest neighbor search, the model discovers optimal distribution (in)dependent algorithms such as binary search and variants of interpolation search. In higher dimensions, the model learns solutions that resemble k-d trees in some regimes, while in others, they have elements of locality-sensitive hashing. The model can also learn useful representations of high-dimensional data and exploit them to design effective data structures. We also adapt our framework to the problem of estimating frequencies over a data stream, and believe it could also be a powerful discovery tool for new problems.
Abstract:Calibration is a well-studied property of predictors which guarantees meaningful uncertainty estimates. Multicalibration is a related notion -- originating in algorithmic fairness -- which requires predictors to be simultaneously calibrated over a potentially complex and overlapping collection of protected subpopulations (such as groups defined by ethnicity, race, or income). We conduct the first comprehensive study evaluating the usefulness of multicalibration post-processing across a broad set of tabular, image, and language datasets for models spanning from simple decision trees to 90 million parameter fine-tuned LLMs. Our findings can be summarized as follows: (1) models which are calibrated out of the box tend to be relatively multicalibrated without any additional post-processing; (2) multicalibration post-processing can help inherently uncalibrated models; and (3) traditional calibration measures may sometimes provide multicalibration implicitly. More generally, we also distill many independent observations which may be useful for practical and effective applications of multicalibration post-processing in real-world contexts.
Abstract:Pre-trained large language models (LLMs) exhibit impressive mathematical reasoning capabilities, yet how they compute basic arithmetic, such as addition, remains unclear. This paper shows that pre-trained LLMs add numbers using Fourier features -- dimensions in the hidden state that represent numbers via a set of features sparse in the frequency domain. Within the model, MLP and attention layers use Fourier features in complementary ways: MLP layers primarily approximate the magnitude of the answer using low-frequency features, while attention layers primarily perform modular addition (e.g., computing whether the answer is even or odd) using high-frequency features. Pre-training is crucial for this mechanism: models trained from scratch to add numbers only exploit low-frequency features, leading to lower accuracy. Introducing pre-trained token embeddings to a randomly initialized model rescues its performance. Overall, our analysis demonstrates that appropriate pre-trained representations (e.g., Fourier features) can unlock the ability of Transformers to learn precise mechanisms for algorithmic tasks.
Abstract:We consider the problem of online multiclass U-calibration, where a forecaster aims to make sequential distributional predictions over $K$ classes with low U-calibration error, that is, low regret with respect to all bounded proper losses simultaneously. Kleinberg et al. (2023) developed an algorithm with U-calibration error $O(K\sqrt{T})$ after $T$ rounds and raised the open question of what the optimal bound is. We resolve this question by showing that the optimal U-calibration error is $\Theta(\sqrt{KT})$ -- we start with a simple observation that the Follow-the-Perturbed-Leader algorithm of Daskalakis and Syrgkanis (2016) achieves this upper bound, followed by a matching lower bound constructed with a specific proper loss (which, as a side result, also proves the optimality of the algorithm of Daskalakis and Syrgkanis (2016) in the context of online learning against an adversary with finite choices). We also strengthen our results under natural assumptions on the loss functions, including $\Theta(\log T)$ U-calibration error for Lipschitz proper losses, $O(\log T)$ U-calibration error for a certain class of decomposable proper losses, U-calibration error bounds for proper losses with a low covering number, and others.
Abstract:Transformers achieve state-of-the-art accuracy and robustness across many tasks, but an understanding of the inductive biases that they have and how those biases are different from other neural network architectures remains elusive. Various neural network architectures such as fully connected networks have been found to have a simplicity bias towards simple functions of the data; one version of this simplicity bias is a spectral bias to learn simple functions in the Fourier space. In this work, we identify the notion of sensitivity of the model to random changes in the input as a notion of simplicity bias which provides a unified metric to explain the simplicity and spectral bias of transformers across different data modalities. We show that transformers have lower sensitivity than alternative architectures, such as LSTMs, MLPs and CNNs, across both vision and language tasks. We also show that low-sensitivity bias correlates with improved robustness; furthermore, it can also be used as an efficient intervention to further improve the robustness of transformers.