Social media has become a very popular source of information. With this popularity comes an interest in systems that can classify the information produced. This study tries to create such a system detecting irony in Twitter users. Recent work emphasize the importance of lexical features, sentiment features and the contrast herein along with TF-IDF and topic models. Based on a thorough feature selection process, the resulting model contains specific sub-features from these areas. Our model reaches an F1-score of 0.84, which is above the baseline. We find that lexical features, especially TF-IDF, contribute the most to our models while sentiment and topic modeling features contribute less to overall performance. Lastly, we highlight multiple interesting and important paths for further exploration.
This paper aims to test whether a multi-modal approach for music emotion recognition (MER) performs better than a uni-modal one on high-level song features and lyrics. We use 11 song features retrieved from the Spotify API, combined lyrics features including sentiment, TF-IDF, and Anew to predict valence and arousal (Russell, 1980) scores on the Deezer Mood Detection Dataset (DMDD) (Delbouys et al., 2018) with 4 different regression models. We find that out of the 11 high-level song features, mainly 5 contribute to the performance, multi-modal features do better than audio alone when predicting valence. We made our code publically available.