Abstract:Mechanistic interpretability (MI) aims to explain how neural networks work by uncovering their underlying causal mechanisms. As the field grows in influence, it is increasingly important to examine not just models themselves, but the assumptions, concepts and explanatory strategies implicit in MI research. We argue that mechanistic interpretability needs philosophy: not as an afterthought, but as an ongoing partner in clarifying its concepts, refining its methods, and assessing the epistemic and ethical stakes of interpreting AI systems. Taking three open problems from the MI literature as examples, this position paper illustrates the value philosophy can add to MI research, and outlines a path toward deeper interdisciplinary dialogue.
Abstract:This paper addresses the question of whether large language model-powered chatbots are capable of assertion. According to what we call the Thesis of Chatbot Assertion (TCA), chatbots are the kinds of things that can assert, and at least some of the output produced by current-generation chatbots qualifies as assertion. We provide some motivation for TCA, arguing that it ought to be taken seriously and not simply dismissed. We also review recent objections to TCA, arguing that these objections are weighty. We thus confront the following dilemma: how can we do justice to both the considerations for and against TCA? We consider two influential responses to this dilemma - the first appeals to the notion of proxy-assertion; the second appeals to fictionalism - and argue that neither is satisfactory. Instead, reflecting on the ontogenesis of assertion, we argue that we need to make space for a category of proto-assertion. We then apply the category of proto-assertion to chatbots, arguing that treating chatbots as proto-assertors provides a satisfactory resolution to the dilemma of chatbot assertion.