What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 16, 2025
Abstract:This paper presents CAMEO -- a curated collection of multilingual emotional speech datasets designed to facilitate research in emotion recognition and other speech-related tasks. The main objectives were to ensure easy access to the data, to allow reproducibility of the results, and to provide a standardized benchmark for evaluating speech emotion recognition (SER) systems across different emotional states and languages. The paper describes the dataset selection criteria, the curation and normalization process, and provides performance results for several models. The collection, along with metadata, and a leaderboard, is publicly available via the Hugging Face platform.
* Under review at NeurIPS
Via

May 19, 2025
Abstract:Transferring linguistic knowledge from a pretrained language model (PLM) to acoustic feature learning has proven effective in enhancing end-to-end automatic speech recognition (E2E-ASR). However, aligning representations between linguistic and acoustic modalities remains a challenge due to inherent modality gaps. Optimal transport (OT) has shown promise in mitigating these gaps by minimizing the Wasserstein distance (WD) between linguistic and acoustic feature distributions. However, previous OT-based methods overlook structural relationships, treating feature vectors as unordered sets. To address this, we propose Graph Matching Optimal Transport (GM-OT), which models linguistic and acoustic sequences as structured graphs. Nodes represent feature embeddings, while edges capture temporal and sequential relationships. GM-OT minimizes both WD (between nodes) and Gromov-Wasserstein distance (GWD) (between edges), leading to a fused Gromov-Wasserstein distance (FGWD) formulation. This enables structured alignment and more efficient knowledge transfer compared to existing OT-based approaches. Theoretical analysis further shows that prior OT-based methods in linguistic knowledge transfer can be viewed as a special case within our GM-OT framework. We evaluate GM-OT on Mandarin ASR using a CTC-based E2E-ASR system with a PLM for knowledge transfer. Experimental results demonstrate significant performance gains over state-of-the-art models, validating the effectiveness of our approach.
* To appear in Interspeech 2025
Via

May 15, 2025
Abstract:The integration of AI speech recognition technologies into healthcare has the potential to revolutionize clinical workflows and patient-provider communication. However, this study reveals significant gaps in inclusivity, with datasets and research disproportionately favouring high-resource languages, standardized accents, and narrow demographic groups. These biases risk perpetuating healthcare disparities, as AI systems may misinterpret speech from marginalized groups. This paper highlights the urgent need for inclusive dataset design, bias mitigation research, and policy frameworks to ensure equitable access to AI speech technologies in healthcare.
Via

May 16, 2025
Abstract:We present LipDiffuser, a conditional diffusion model for lip-to-speech generation synthesizing natural and intelligible speech directly from silent video recordings. Our approach leverages the magnitude-preserving ablated diffusion model (MP-ADM) architecture as a denoiser model. To effectively condition the model, we incorporate visual features using magnitude-preserving feature-wise linear modulation (MP-FiLM) alongside speaker embeddings. A neural vocoder then reconstructs the speech waveform from the generated mel-spectrograms. Evaluations on LRS3 and TCD-TIMIT demonstrate that LipDiffuser outperforms existing lip-to-speech baselines in perceptual speech quality and speaker similarity, while remaining competitive in downstream automatic speech recognition (ASR). These findings are also supported by a formal listening experiment. Extensive ablation studies and cross-dataset evaluation confirm the effectiveness and generalization capabilities of our approach.
Via

May 22, 2025
Abstract:In this paper, we combine two-step knowledge distillation, structured pruning, truncation, and vocabulary trimming for extremely compressing multilingual encoder-only language models for low-resource languages. Our novel approach systematically combines existing techniques and takes them to the extreme, reducing layer depth, feed-forward hidden size, and intermediate layer embedding size to create significantly smaller monolingual models while retaining essential language-specific knowledge. We achieve compression rates of up to 92% with only a marginal performance drop of 2-10% in four downstream tasks, including sentiment analysis, topic classification, named entity recognition, and part-of-speech tagging, across three low-resource languages. Notably, the performance degradation correlates with the amount of language-specific data in the teacher model, with larger datasets resulting in smaller performance losses. Additionally, we conduct extensive ablation studies to identify best practices for multilingual model compression using these techniques.
* Pre-print
Via

May 16, 2025
Abstract:Recently, large-scale pre-trained speech encoders and Large Language Models (LLMs) have been released, which show state-of-the-art performance on a range of spoken language processing tasks including Automatic Speech Recognition (ASR). To effectively combine both models for better performance, continuous speech prompts, and ASR error correction have been adopted. However, these methods are prone to suboptimal performance or are inflexible. In this paper, we propose a new paradigm, LegoSLM, that bridges speech encoders and LLMs using the ASR posterior matrices. The speech encoder is trained to generate Connectionist Temporal Classification (CTC) posteriors over the LLM vocabulary, which are used to reconstruct pseudo-audio embeddings by computing a weighted sum of the LLM input embeddings. These embeddings are concatenated with text embeddings in the LLM input space. Using the well-performing USM and Gemma models as an example, we demonstrate that our proposed LegoSLM method yields good performance on both ASR and speech translation tasks. By connecting USM with Gemma models, we can get an average of 49% WERR over the USM-CTC baseline on 8 MLS testsets. The trained model also exhibits modularity in a range of settings -- after fine-tuning the Gemma model weights, the speech encoder can be switched and combined with the LLM in a zero-shot fashion. Additionally, we propose to control the decode-time influence of the USM and LLM using a softmax temperature, which shows effectiveness in domain adaptation.
Via

May 30, 2025
Abstract:Audio is a rich sensing modality that is useful for a variety of human activity recognition tasks. However, the ubiquitous nature of smartphones and smart speakers with always-on microphones has led to numerous privacy concerns and a lack of trust in deploying these audio-based sensing systems. This paper addresses this critical challenge of preserving user privacy when using audio for sensing applications while maintaining utility. While prior work focuses primarily on protecting recoverable speech content, we show that sensitive speaker-specific attributes such as age and gender can still be inferred after masking speech and propose a comprehensive privacy evaluation framework to assess this speaker attribute leakage. We design and implement FeatureSense, an open-source library that provides a set of generalizable privacy-aware audio features that can be used for wide range of sensing applications. We present an adaptive task-specific feature selection algorithm that optimizes the privacy-utility-cost trade-off based on the application requirements. Through our extensive evaluation, we demonstrate the high utility of FeatureSense across a diverse set of sensing tasks. Our system outperforms existing privacy techniques by 60.6% in preserving user-specific privacy. This work provides a foundational framework for ensuring trust in audio sensing by enabling effective privacy-aware audio classification systems.
Via

May 16, 2025
Abstract:Speaker diarization, the process of identifying "who spoke when" in audio recordings, is essential for understanding classroom dynamics. However, classroom settings present distinct challenges, including poor recording quality, high levels of background noise, overlapping speech, and the difficulty of accurately capturing children's voices. This study investigates the effectiveness of multi-stage diarization models using Nvidia's NeMo diarization pipeline. We assess the impact of denoising on diarization accuracy and compare various voice activity detection (VAD) models, including self-supervised transformer-based frame-wise VAD models. We also explore a hybrid VAD approach that integrates Automatic Speech Recognition (ASR) word-level timestamps with frame-level VAD predictions. We conduct experiments using two datasets from English speaking classrooms to separate teacher vs. student speech and to separate all speakers. Our results show that denoising significantly improves the Diarization Error Rate (DER) by reducing the rate of missed speech. Additionally, training on both denoised and noisy datasets leads to substantial performance gains in noisy conditions. The hybrid VAD model leads to further improvements in speech detection, achieving a DER as low as 17% in teacher-student experiments and 45% in all-speaker experiments. However, we also identified trade-offs between voice activity detection and speaker confusion. Overall, our study highlights the effectiveness of multi-stage diarization models and integrating ASR-based information for enhancing speaker diarization in noisy classroom environments.
Via

May 07, 2025
Abstract:In this work, we investigate application of generative speech enhancement to improve the robustness of ASR models in noisy and reverberant conditions. We employ a recently-proposed speech enhancement model based on Schr\"odinger bridge, which has been shown to perform well compared to diffusion-based approaches. We analyze the impact of model scaling and different sampling methods on the ASR performance. Furthermore, we compare the considered model with predictive and diffusion-based baselines and analyze the speech recognition performance when using different pre-trained ASR models. The proposed approach significantly reduces the word error rate, reducing it by approximately 40% relative to the unprocessed speech signals and by approximately 8% relative to a similarly sized predictive approach.
* ICASSP 2025: IEEE International Conference on Acoustics, Speech
and Signal Processing, Hyderabad, India, April 2025. ICASSP 2025: IEEE
International Conference on Acoustics, Speech and Signal Processing,
Hyderabad, India, April 2025
* 5 pages. Published in ICASSP 2025
Via

May 30, 2025
Abstract:End-to-end speaker diarization enables accurate overlap-aware diarization by jointly estimating multiple speakers' speech activities in parallel. This approach is data-hungry, requiring a large amount of labeled conversational data, which cannot be fully obtained from real datasets alone. To address this issue, large-scale simulated data is often used for pretraining, but it requires enormous storage and I/O capacity, and simulating data that closely resembles real conversations remains challenging. In this paper, we propose pretraining a model to identify multiple speakers from an input fully overlapped mixture as an alternative to pretraining a diarization model. This method eliminates the need to prepare a large-scale simulated dataset while leveraging large-scale speaker recognition datasets for training. Through comprehensive experiments, we demonstrate that the proposed method enables a highly accurate yet lightweight local diarization model without simulated conversational data.
* Accepted to Interspeech 2025
Via
