Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"chatbots": models, code, and papers

Learning Matching Models with Weak Supervision for Response Selection in Retrieval-based Chatbots

May 10, 2018
Yu Wu, Wei Wu, Zhoujun Li, Ming Zhou

We propose a method that can leverage unlabeled data to learn a matching model for response selection in retrieval-based chatbots. The method employs a sequence-to-sequence architecture (Seq2Seq) model as a weak annotator to judge the matching degree of unlabeled pairs, and then performs learning with both the weak signals and the unlabeled data. Experimental results on two public data sets indicate that matching models get significant improvements when they are learned with the proposed method.

* accepted by ACL 2018 as a short paper 

Proactive Retrieval-based Chatbots based on Relevant Knowledge and Goals

Jul 18, 2021
Yutao Zhu, Jian-Yun Nie, Kun Zhou, Pan Du, Hao Jiang, Zhicheng Dou

A proactive dialogue system has the ability to proactively lead the conversation. Different from the general chatbots which only react to the user, proactive dialogue systems can be used to achieve some goals, e.g., to recommend some items to the user. Background knowledge is essential to enable smooth and natural transitions in dialogue. In this paper, we propose a new multi-task learning framework for retrieval-based knowledge-grounded proactive dialogue. To determine the relevant knowledge to be used, we frame knowledge prediction as a complementary task and use explicit signals to supervise its learning. The final response is selected according to the predicted knowledge, the goal to achieve, and the context. Experimental results show that explicit modeling of knowledge prediction and goal selection can greatly improve the final response selection. Our code is available at

* Accepted by SIGIR 2021 

A Document-grounded Matching Network for Response Selection in Retrieval-based Chatbots

Jun 11, 2019
Xueliang Zhao, Chongyang Tao, Wei Wu, Can Xu, Dongyan Zhao, Rui Yan

We present a document-grounded matching network (DGMN) for response selection that can power a knowledge-aware retrieval-based chatbot system. The challenges of building such a model lie in how to ground conversation contexts with background documents and how to recognize important information in the documents for matching. To overcome the challenges, DGMN fuses information in a document and a context into representations of each other, and dynamically determines if grounding is necessary and importance of different parts of the document and the context through hierarchical interaction with a response at the matching step. Empirical studies on two public data sets indicate that DGMN can significantly improve upon state-of-the-art methods and at the same time enjoys good interpretability.

* IJCAI 2019 

Lifelong Learning Dialogue Systems: Chatbots that Self-Learn On the Job

Sep 22, 2020
Bing Liu, Sahisnu Mazumder

Dialogue systems, also called chatbots, are now used in a wide range of applications. However, they still have some major weaknesses. One key weakness is that they are typically trained from manually-labeled data and/or written with handcrafted rules, and their knowledge bases (KBs) are also compiled by human experts. Due to the huge amount of manual effort involved, they are difficult to scale and also tend to produce many errors ought to their limited ability to understand natural language and the limited knowledge in their KBs. Thus, the level of user satisfactory is often low. In this paper, we propose to dramatically improve this situation by endowing the system the ability to continually learn (1) new world knowledge, (2) new language expressions to ground them to actions, and (3) new conversational skills, during conversation or "on the job" by themselves so that as the systems chat more and more with users, they become more and more knowledgeable and are better and better able to understand diverse natural language expressions and improve their conversational skills. A key approach to achieving these is to exploit the multi-user environment of such systems to self-learn through interactions with users via verb and non-verb means. The paper discusses not only key challenges and promising directions to learn from users during conversation but also how to ensure the correctness of the learned knowledge.


Dually Interactive Matching Network for Personalized Response Selection in Retrieval-Based Chatbots

Sep 07, 2019
Jia-Chen Gu, Zhen-Hua Ling, Xiaodan Zhu, Quan Liu

This paper proposes a dually interactive matching network (DIM) for presenting the personalities of dialogue agents in retrieval-based chatbots. This model develops from the interactive matching network (IMN) which models the matching degree between a context composed of multiple utterances and a response candidate. Compared with previous persona fusion approaches which enhance the representation of a context by calculating its similarity with a given persona, the DIM model adopts a dual matching architecture, which performs interactive matching between responses and contexts and between responses and personas respectively for ranking response candidates. Experimental results on PERSONA-CHAT dataset show that the DIM model outperforms its baseline model, i.e., IMN with persona fusion, by a margin of 14.5% and outperforms the current state-of-the-art model by a margin of 27.7% in terms of top-1 accuracy [email protected]

* Accepted by EMNLP 2019 

Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based Chatbots

Apr 07, 2020
Jia-Chen Gu, Tianda Li, Quan Liu, Xiaodan Zhu, Zhen-Hua Ling, Zhiming Su, Si Wei

In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots. A new model, named Speaker-Aware BERT (SA-BERT), is proposed in order to make the model aware of the speaker change information, which is an important and intrinsic property of multi-turn dialogues. Furthermore, a speaker-aware disentanglement strategy is proposed to tackle the entangled dialogues. This strategy selects a small number of most important utterances as the filtered context according to the speakers' information in them. Finally, domain adaptation is performed in order to incorporate the in-domain knowledge into pre-trained language models. Experiments on five public datasets show that our proposed model outperforms the present models on all metrics by large margins and achieves new state-of-the-art performances for multi-turn response selection.

* arXiv admin note: text overlap with arXiv:1901.01824, arXiv:2004.01940 

Building chatbots from large scale domain-specific knowledge bases: challenges and opportunities

Dec 31, 2019
Walid Shalaby, Adriano Arantes, Teresa GonzalezDiaz, Chetan Gupta

Popular conversational agents frameworks such as Alexa Skills Kit (ASK) and Google Actions (gActions) offer unprecedented opportunities for facilitating the development and deployment of voice-enabled AI solutions in various verticals. Nevertheless, understanding user utterances with high accuracy remains a challenging task with these frameworks. Particularly, when building chatbots with large volume of domain-specific entities. In this paper, we describe the challenges and lessons learned from building a large scale virtual assistant for understanding and responding to equipment-related complaints. In the process, we describe an alternative scalable framework for: 1) extracting the knowledge about equipment components and their associated problem entities from short texts, and 2) learning to identify such entities in user utterances. We show through evaluation on a real dataset that the proposed framework, compared to off-the-shelf popular ones, scales better with large volume of entities being up to 30% more accurate, and is more effective in understanding user utterances with domain-specific entities.


A Sequential Matching Framework for Multi-turn Response Selection in Retrieval-based Chatbots

Oct 31, 2017
Yu Wu, Wei Wu, Chen Xing, Can Xu, Zhoujun Li, Ming Zhou

We study the problem of response selection for multi-turn conversation in retrieval-based chatbots. The task requires matching a response candidate with a conversation context, whose challenges include how to recognize important parts of the context, and how to model the relationships among utterances in the context. Existing matching methods may lose important information in contexts as we can interpret them with a unified framework in which contexts are transformed to fixed-length vectors without any interaction with responses before matching. The analysis motivates us to propose a new matching framework that can sufficiently carry the important information in contexts to matching and model the relationships among utterances at the same time. The new framework, which we call a sequential matching framework (SMF), lets each utterance in a context interacts with a response candidate at the first step and transforms the pair to a matching vector. The matching vectors are then accumulated following the order of the utterances in the context with a recurrent neural network (RNN) which models the relationships among the utterances. The context-response matching is finally calculated with the hidden states of the RNN. Under SMF, we propose a sequential convolutional network and sequential attention network and conduct experiments on two public data sets to test their performance. Experimental results show that both models can significantly outperform the state-of-the-art matching methods. We also show that the models are interpretable with visualizations that provide us insights on how they capture and leverage the important information in contexts for matching.

* Submitted to Computational Linguistics 

Sequential Sentence Matching Network for Multi-turn Response Selection in Retrieval-based Chatbots

May 16, 2020
Chao Xiong, Che Liu, Zijun Xu, Junfeng Jiang, Jieping Ye

Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifically, the state-of-the-art methods perform the context-response matching by word or segment similarity. However, these models lack a full exploitation of the sentence-level semantic information, and make simple mistakes that humans can easily avoid. In this work, we propose a matching network, called sequential sentence matching network (S2M), to use the sentence-level semantic information to address the problem. Firstly and most importantly, we find that by using the sentence-level semantic information, the network successfully addresses the problem and gets a significant improvement on matching, resulting in a state-of-the-art performance. Furthermore, we integrate the sentence matching we introduced here and the usual word similarity matching reported in the current literature, to match at different semantic levels. Experiments on three public data sets show that such integration further improves the model performance.

* 10 pages, 4 figures