Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
The ODELIA Breast MRI Challenge 2025 addresses a critical issue in breast cancer screening: improving early detection through more efficient and accurate interpretation of breast MRI scans. Even though methods for general-purpose whole-body lesion segmentation as well as multi-time-point analysis exist, breast cancer detection remains highly challenging, largely due to the limited availability of high-quality segmentation labels. Therefore, developing robust classification-based approaches is crucial for the future of early breast cancer detection, particularly in applications such as large-scale screening. In this write-up, we provide a comprehensive overview of our approach to the challenge. We begin by detailing the underlying concept and foundational assumptions that guided our work. We then describe the iterative development process, highlighting the key stages of experimentation, evaluation, and refinement that shaped the evolution of our solution. Finally, we present the reasoning and evidence that informed the design choices behind our final submission, with a focus on performance, robustness, and clinical relevance. We release our full implementation publicly at https://github.com/MIC-DKFZ/MeisenMeister
Purpose: Medical foundation models (FMs) offer a path to build high-performance diagnostic systems. However, their application to prostate cancer (PCa) detection from micro-ultrasound ({\mu}US) remains untested in clinical settings. We present ProstNFound+, an adaptation of FMs for PCa detection from {\mu}US, along with its first prospective validation. Methods: ProstNFound+ incorporates a medical FM, adapter tuning, and a custom prompt encoder that embeds PCa-specific clinical biomarkers. The model generates a cancer heatmap and a risk score for clinically significant PCa. Following training on multi-center retrospective data, the model is prospectively evaluated on data acquired five years later from a new clinical site. Model predictions are benchmarked against standard clinical scoring protocols (PRI-MUS and PI-RADS). Results: ProstNFound+ shows strong generalization to the prospective data, with no performance degradation compared to retrospective evaluation. It aligns closely with clinical scores and produces interpretable heatmaps consistent with biopsy-confirmed lesions. Conclusion: The results highlight its potential for clinical deployment, offering a scalable and interpretable alternative to expert-driven protocols.
Low-dose computed tomography (LDCT) is the current standard for lung cancer screening, yet its adoption and accessibility remain limited. Many regions lack LDCT infrastructure, and even among those screened, early-stage cancer detection often yield false positives, as shown in the National Lung Screening Trial (NLST) with a sensitivity of 93.8 percent and a false-positive rate of 26.6 percent. We aim to investigate whether X-ray dark-field imaging (DFI) radiograph, a technique sensitive to small-angle scatter from alveolar microstructure and less susceptible to organ shadowing, can significantly improve early-stage lung tumor detection when coupled with deep-learning segmentation. Using paired attenuation (ATTN) and DFI radiograph images of euthanized mouse lungs, we generated realistic synthetic tumors with irregular boundaries and intensity profiles consistent with physical lung contrast. A U-Net segmentation network was trained on small patches using either ATTN, DFI, or a combination of ATTN and DFI channels. Results show that the DFI-only model achieved a true-positive detection rate of 83.7 percent, compared with 51 percent for ATTN-only, while maintaining comparable specificity (90.5 versus 92.9 percent). The combined ATTN and DFI input achieved 79.6 percent sensitivity and 97.6 percent specificity. In conclusion, DFI substantially improves early-tumor detectability in comparison to standard attenuation radiography and shows potential as an accessible, low-cost, low-dose alternative for pre-clinical or limited-resource screening where LDCT is unavailable.




Large annotated datasets are essential for training robust Computer-Aided Diagnosis (CAD) models for breast cancer detection or risk prediction. However, acquiring such datasets with fine-detailed annotation is both costly and time-consuming. Vision-Language Models (VLMs), such as CLIP, which are pre-trained on large image-text pairs, offer a promising solution by enhancing robustness and data efficiency in medical imaging tasks. This paper introduces a novel Multi-View Mammography and Language Model for breast cancer classification and risk prediction, trained on a dataset of paired mammogram images and synthetic radiology reports. Our MV-MLM leverages multi-view supervision to learn rich representations from extensive radiology data by employing cross-modal self-supervision across image-text pairs. This includes multiple views and the corresponding pseudo-radiology reports. We propose a novel joint visual-textual learning strategy to enhance generalization and accuracy performance over different data types and tasks to distinguish breast tissues or cancer characteristics(calcification, mass) and utilize these patterns to understand mammography images and predict cancer risk. We evaluated our method on both private and publicly available datasets, demonstrating that the proposed model achieves state-of-the-art performance in three classification tasks: (1) malignancy classification, (2) subtype classification, and (3) image-based cancer risk prediction. Furthermore, the model exhibits strong data efficiency, outperforming existing fully supervised or VLM baselines while trained on synthetic text reports and without the need for actual radiology reports.
Importance Incidental thyroid findings (ITFs) are increasingly detected on imaging performed for non-thyroid indications. Their prevalence, features, and clinical consequences remain undefined. Objective To develop, validate, and deploy a natural language processing (NLP) pipeline to identify ITFs in radiology reports and assess their prevalence, features, and clinical outcomes. Design, Setting, and Participants Retrospective cohort of adults without prior thyroid disease undergoing thyroid-capturing imaging at Mayo Clinic sites from July 1, 2017, to September 30, 2023. A transformer-based NLP pipeline identified ITFs and extracted nodule characteristics from image reports from multiple modalities and body regions. Main Outcomes and Measures Prevalence of ITFs, downstream thyroid ultrasound, biopsy, thyroidectomy, and thyroid cancer diagnosis. Logistic regression identified demographic and imaging-related factors. Results Among 115,683 patients (mean age, 56.8 [SD 17.2] years; 52.9% women), 9,077 (7.8%) had an ITF, of which 92.9% were nodules. ITFs were more likely in women, older adults, those with higher BMI, and when imaging was ordered by oncology or internal medicine. Compared with chest CT, ITFs were more likely via neck CT, PET, and nuclear medicine scans. Nodule characteristics were poorly documented, with size reported in 44% and other features in fewer than 15% (e.g. calcifications). Compared with patients without ITFs, those with ITFs had higher odds of thyroid nodule diagnosis, biopsy, thyroidectomy and thyroid cancer diagnosis. Most cancers were papillary, and larger when detected after ITFs vs no ITF. Conclusions ITFs were common and strongly associated with cascades leading to the detection of small, low-risk cancers. These findings underscore the role of ITFs in thyroid cancer overdiagnosis and the need for standardized reporting and more selective follow-up.
Lung nodule detection in chest CT is crucial for early lung cancer diagnosis, yet existing deep learning approaches face challenges when deployed in clinical settings with limited annotated data. While curriculum learning has shown promise in improving model training, traditional static curriculum strategies fail in data-scarce scenarios. We propose Scale Adaptive Curriculum Learning (SACL), a novel training strategy that dynamically adjusts curriculum design based on available data scale. SACL introduces three key mechanisms:(1) adaptive epoch scheduling, (2) hard sample injection, and (3) scale-aware optimization. We evaluate SACL on the LUNA25 dataset using YOLOv11 as the base detector. Experimental results demonstrate that while SACL achieves comparable performance to static curriculum learning on the full dataset in mAP50, it shows significant advantages under data-limited conditions with 4.6%, 3.5%, and 2.0% improvements over baseline at 10%, 20%, and 50% of training data respectively. By enabling robust training across varying data scales without architectural modifications, SACL provides a practical solution for healthcare institutions to develop effective lung nodule detection systems despite limited annotation resources.
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.
This paper presents the FuzzyDistillViT-MobileNet model, a novel approach for lung cancer (LC) classification, leveraging dynamic fuzzy logic-driven knowledge distillation (KD) to address uncertainty and complexity in disease diagnosis. Unlike traditional models that rely on static KD with fixed weights, our method dynamically adjusts the distillation weight using fuzzy logic, enabling the student model to focus on high-confidence regions while reducing attention to ambiguous areas. This dynamic adjustment improves the model ability to handle varying uncertainty levels across different regions of LC images. We employ the Vision Transformer (ViT-B32) as the instructor model, which effectively transfers knowledge to the student model, MobileNet, enhancing the student generalization capabilities. The training process is further optimized using a dynamic wait adjustment mechanism that adapts the training procedure for improved convergence and performance. To enhance image quality, we introduce pixel-level image fusion improvement techniques such as Gamma correction and Histogram Equalization. The processed images (Pix1 and Pix2) are fused using a wavelet-based fusion method to improve image resolution and feature preservation. This fusion method uses the wavedec2 function to standardize images to a 224x224 resolution, decompose them into multi-scale frequency components, and recursively average coefficients at each level for better feature representation. To address computational efficiency, Genetic Algorithm (GA) is used to select the most suitable pre-trained student model from a pool of 12 candidates, balancing model performance with computational cost. The model is evaluated on two datasets, including LC25000 histopathological images (99.16% accuracy) and IQOTH/NCCD CT-scan images (99.54% accuracy), demonstrating robustness across different imaging domains.
Mammography, the current standard for breast cancer screening, has reduced sensitivity in women with dense breast tissue, contributing to missed or delayed diagnoses. Thermalytix, an AI-based thermal imaging modality, captures functional vascular and metabolic cues that may complement mammographic structural data. This study investigates whether a breast density-informed multi-modal AI framework can improve cancer detection by dynamically selecting the appropriate imaging modality based on breast tissue composition. A total of 324 women underwent both mammography and thermal imaging. Mammography images were analyzed using a multi-view deep learning model, while Thermalytix assessed thermal images through vascular and thermal radiomics. The proposed framework utilized Mammography AI for fatty breasts and Thermalytix AI for dense breasts, optimizing predictions based on tissue type. This multi-modal AI framework achieved a sensitivity of 94.55% (95% CI: 88.54-100) and specificity of 79.93% (95% CI: 75.14-84.71), outperforming standalone mammography AI (sensitivity 81.82%, specificity 86.25%) and Thermalytix AI (sensitivity 92.73%, specificity 75.46%). Importantly, the sensitivity of Mammography dropped significantly in dense breasts (67.86%) versus fatty breasts (96.30%), whereas Thermalytix AI maintained high and consistent sensitivity in both (92.59% and 92.86%, respectively). This demonstrates that a density-informed multi-modal AI framework can overcome key limitations of unimodal screening and deliver high performance across diverse breast compositions. The proposed framework is interpretable, low-cost, and easily deployable, offering a practical path to improving breast cancer screening outcomes in both high-resource and resource-limited settings.
Intraoperative pathology is pivotal to precision surgery, yet its clinical impact is constrained by diagnostic complexity and the limited availability of high-quality frozen-section data. While computational pathology has made significant strides, the lack of large-scale, prospective validation has impeded its routine adoption in surgical workflows. Here, we introduce CRISP, a clinical-grade foundation model developed on over 100,000 frozen sections from eight medical centers, specifically designed to provide Clinical-grade Robust Intraoperative Support for Pathology (CRISP). CRISP was comprehensively evaluated on more than 15,000 intraoperative slides across nearly 100 retrospective diagnostic tasks, including benign-malignant discrimination, key intraoperative decision-making, and pan-cancer detection, etc. The model demonstrated robust generalization across diverse institutions, tumor types, and anatomical sites-including previously unseen sites and rare cancers. In a prospective cohort of over 2,000 patients, CRISP sustained high diagnostic accuracy under real-world conditions, directly informing surgical decisions in 92.6% of cases. Human-AI collaboration further reduced diagnostic workload by 35%, avoided 105 ancillary tests and enhanced detection of micrometastases with 87.5% accuracy. Together, these findings position CRISP as a clinical-grade paradigm for AI-driven intraoperative pathology, bridging computational advances with surgical precision and accelerating the translation of artificial intelligence into routine clinical practice.