Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Skin cancer is one of the most common cancers worldwide and early detection is critical for effective treatment. However, current AI diagnostic tools are often trained on datasets dominated by lighter skin tones, leading to reduced accuracy and fairness for people with darker skin. The International Skin Imaging Collaboration (ISIC) dataset, one of the most widely used benchmarks, contains over 70% light skin images while dark skins fewer than 8%. This imbalance poses a significant barrier to equitable healthcare delivery and highlights the urgent need for methods that address demographic diversity in medical imaging. This paper addresses this challenge of skin tone imbalance in automated skin cancer detection using dermoscopic images. To overcome this, we present a generative augmentation pipeline that fine-tunes a pre-trained Stable Diffusion model using Low-Rank Adaptation (LoRA) on the image dark-skin subset of the ISIC dataset and generates synthetic dermoscopic images conditioned on lesion type and skin tone. In this study, we investigated the utility of these images on two downstream tasks: lesion segmentation and binary classification. For segmentation, models trained on the augmented dataset and evaluated on held-out real images show consistent improvements in IoU, Dice coefficient, and boundary accuracy. These evalutions provides the verification of Generated dataset. For classification, an EfficientNet-B0 model trained on the augmented dataset achieved 92.14% accuracy. This paper demonstrates that synthetic data augmentation with Generative AI integration can substantially reduce bias with increase fairness in conventional dermatological diagnostics and open challenges for future directions.
Lung cancer remains one of the most common and deadliest forms of cancer worldwide. The likelihood of successful treatment depends strongly on the stage at which the disease is diagnosed. Therefore, early detection of lung cancer represents a critical medical challenge. However, this task poses significant difficulties for thoracic radiologists due to the large number of studies to review, the presence of multiple nodules within the lungs, and the small size of many nodules, which complicates visual assessment. Consequently, the development of automated systems that incorporate highly accurate and computationally efficient lung nodule detection and classification modules is essential. This study introduces three methodological improvements for lung nodule classification: (1) an advanced CT scan cropping strategy that focuses the model on the target nodule while reducing computational cost; (2) target filtering techniques for removing noisy labels; (3) novel augmentation methods to improve model robustness. The integration of these techniques enables the development of a robust classification subsystem within a comprehensive Clinical Decision Support System for lung cancer detection, capable of operating across diverse acquisition protocols, scanner types, and upstream models (segmentation or detection). The multiclass model achieved a Macro ROC AUC of 0.9176 and a Macro F1-score of 0.7658, while the binary model reached a Binary ROC AUC of 0.9383 and a Binary F1-score of 0.8668 on the LIDC-IDRI dataset. These results outperform several previously reported approaches and demonstrate state-of-the-art performance for this task.
Accurate polyp segmentation in colonoscopy is essential for cancer prevention but remains challenging due to: (1) high morphological variability (from flat to protruding lesions), (2) strong visual similarity to normal structures such as folds and vessels, and (3) the need for robust multi-scale detection. Existing deep learning approaches suffer from unidirectional processing, weak multi-scale fusion, and the absence of anatomical constraints, often leading to false positives (over-segmentation of normal structures) and false negatives (missed subtle flat lesions). We propose GRAFNet, a biologically inspired architecture that emulates the hierarchical organisation of the human visual system. GRAFNet integrates three key modules: (1) a Guided Asymmetric Attention Module (GAAM) that mimics orientation-tuned cortical neurones to emphasise polyp boundaries, (2) a MultiScale Retinal Module (MSRM) that replicates retinal ganglion cell pathways for parallel multi-feature analysis, and (3) a Guided Cortical Attention Feedback Module (GCAFM) that applies predictive coding for iterative refinement. These are unified in a Polyp Encoder-Decoder Module (PEDM) that enforces spatial-semantic consistency via resolution-adaptive feedback. Extensive experiments on five public benchmarks (Kvasir-SEG, CVC-300, CVC-ColonDB, CVC-Clinic, and PolypGen) demonstrate consistent state-of-the-art performance, with 3-8% Dice improvements and 10-20% higher generalisation over leading methods, while offering interpretable decision pathways. This work establishes a paradigm in which neural computation principles bridge the gap between AI accuracy and clinically trustworthy reasoning. Code is available at https://github.com/afofanah/GRAFNet.
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient's long-term risk of developing colorectal cancer.
Accurate annotation of fixation type is a critical step in slide preparation for pathology laboratories. However, this manual process is prone to errors, impacting downstream analyses and diagnostic accuracy. Existing methods for verifying formalin-fixed, paraffin-embedded (FFPE), and frozen section (FS) fixation types typically require full-resolution whole-slide images (WSIs), limiting scalability for high-throughput quality control. We propose a deep-learning model to predict fixation types using low-resolution, pre-scan thumbnail images. The model was trained on WSIs from the TUM Institute of Pathology (n=1,200, Leica GT450DX) and evaluated on a class-balanced subset of The Cancer Genome Atlas dataset (TCGA, n=8,800, Leica AT2), as well as on class-balanced datasets from Augsburg (n=695 [392 FFPE, 303 FS], Philips UFS) and Regensburg (n=202, 3DHISTECH P1000). Our model achieves an AUROC of 0.88 on TCGA, outperforming comparable pre-scan methods by 4.8%. It also achieves AUROCs of 0.72 on Regensburg and Augsburg slides, underscoring challenges related to scanner-induced domain shifts. Furthermore, the model processes each slide in 21 ms, $400\times$ faster than existing high-magnification, full-resolution methods, enabling rapid, high-throughput processing. This approach provides an efficient solution for detecting labelling errors without relying on high-magnification scans, offering a valuable tool for quality control in high-throughput pathology workflows. Future work will improve and evaluate the model's generalisation to additional scanner types. Our findings suggest that this method can increase accuracy and efficiency in digital pathology workflows and may be extended to other low-resolution slide annotations.
Early detection of colorectal cancer hinges on real-time, accurate polyp identification and resection. Yet current high-precision segmentation models rely on GPUs, making them impractical to deploy in primary hospitals, mobile endoscopy units, or capsule robots. To bridge this gap, we present the UltraSeg family, operating in an extreme-compression regime (<0.3 M parameters). UltraSeg-108K (0.108 M parameters) is optimized for single-center data, while UltraSeg-130K (0.13 M parameters) generalizes to multi-center, multi-modal images. By jointly optimizing encoder-decoder widths, incorporating constrained dilated convolutions to enlarge receptive fields, and integrating a cross-layer lightweight fusion module, the models achieve 90 FPS on a single CPU core without sacrificing accuracy. Evaluated on seven public datasets, UltraSeg retains >94% of the Dice score of a 31 M-parameter U-Net while utilizing only 0.4% of its parameters, establishing a strong, clinically viable baseline for the extreme-compression domain and offering an immediately deployable solution for resource-constrained settings. This work provides not only a CPU-native solution for colonoscopy but also a reproducible blueprint for broader minimally invasive surgical vision applications. Source code is publicly available to ensure reproducibility and facilitate future benchmarking.
Pelvic diseases in women of reproductive age represent a major global health burden, with diagnosis frequently delayed due to high anatomical variability, complicating MRI interpretation. Existing AI approaches are largely disease-specific and lack real-time compatibility, limiting generalizability and clinical integration. To address these challenges, we establish a benchmark framework for disease- and parameter-agnostic, real-time-compatible unsupervised anomaly detection in pelvic MRI. The method uses a residual variational autoencoder trained exclusively on healthy sagittal T2-weighted scans acquired across diverse imaging protocols to model normal pelvic anatomy. During inference, reconstruction error heatmaps indicate deviations from learned healthy structure, enabling detection of pathological regions without labeled abnormal data. The model is trained on 294 healthy scans and augmented with diffusion-generated synthetic data to improve robustness. Quantitative evaluation on the publicly available Uterine Myoma MRI Dataset yields an average area-under-the-curve (AUC) value of 0.736, with 0.828 sensitivity and 0.692 specificity. Additional inter-observer clinical evaluation extends analysis to endometrial cancer, endometriosis, and adenomyosis, revealing the influence of anatomical heterogeneity and inter-observer variability on performance interpretation. With a reconstruction time of approximately 92.6 frames per second, the proposed framework establishes a baseline for unsupervised anomaly detection in the female pelvis and supports future integration into real-time MRI. Code is available upon request (https://github.com/AniKnu/UADPelvis), prospective data sets are available for academic collaboration.
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest solid malignancies, is often detected at a late and inoperable stage. Retrospective reviews of prediagnostic CT scans, when conducted by expert radiologists aware that the patient later developed PDAC, frequently reveal lesions that were previously overlooked. To help detecting these lesions earlier, we developed an automated system named ePAI (early Pancreatic cancer detection with Artificial Intelligence). It was trained on data from 1,598 patients from a single medical center. In the internal test involving 1,009 patients, ePAI achieved an area under the receiver operating characteristic curve (AUC) of 0.939-0.999, a sensitivity of 95.3%, and a specificity of 98.7% for detecting small PDAC less than 2 cm in diameter, precisely localizing PDAC as small as 2 mm. In an external test involving 7,158 patients across 6 centers, ePAI achieved an AUC of 0.918-0.945, a sensitivity of 91.5%, and a specificity of 88.0%, precisely localizing PDAC as small as 5 mm. Importantly, ePAI detected PDACs on prediagnostic CT scans obtained 3 to 36 months before clinical diagnosis that had originally been overlooked by radiologists. It successfully detected and localized PDACs in 75 of 159 patients, with a median lead time of 347 days before clinical diagnosis. Our multi-reader study showed that ePAI significantly outperformed 30 board-certified radiologists by 50.3% (P < 0.05) in sensitivity while maintaining a comparable specificity of 95.4% in detecting PDACs early and prediagnostic. These findings suggest its potential of ePAI as an assistive tool to improve early detection of pancreatic cancer.
Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
Deep learning based auto segmentation is increasingly used in radiotherapy, but conventional models often produce anatomically implausible false positives, or hallucinations, in slices lacking target structures. We propose a gated multi-head Transformer architecture based on Swin U-Net, augmented with inter-slice context integration and a parallel detection head, which jointly performs slice-level structure detection via a multi-layer perceptron and pixel-level segmentation through a context-enhanced stream. Detection outputs gate the segmentation predictions to suppress false positives in anatomically invalid slices, and training uses slice-wise Tversky loss to address class imbalance. Experiments on the Prostate-Anatomical-Edge-Cases dataset from The Cancer Imaging Archive demonstrate that the gated model substantially outperforms a non-gated segmentation-only baseline, achieving a mean Dice loss of $0.013 \pm 0.036$ versus $0.732 \pm 0.314$, with detection probabilities strongly correlated with anatomical presence, effectively eliminating spurious segmentations. In contrast, the non-gated model exhibited higher variability and persistent false positives across all slices. These results indicate that detection-based gating enhances robustness and anatomical plausibility in automated segmentation applications, reducing hallucinated predictions without compromising segmentation quality in valid slices, and offers a promising approach for improving the reliability of clinical radiotherapy auto-contouring workflows.