Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Due to silence in early stages, lung cancer has been one of the most leading causes of mortality in cancer patients world-wide. Moreover, major symptoms of lung cancer are hard to differentiate with other respiratory disease symptoms such as COPD, further leading patients to overlook cancer progression in early stages. Thus, to enhance survival rates in lung cancer, early detection from consistent proactive respiratory system monitoring becomes crucial. One of the most prevalent and effective methods for lung cancer monitoring would be low-dose computed tomography(LDCT) chest scans, which led to remarkable enhancements in lung cancer detection or tumor classification tasks under rapid advancements and applications of computer vision based AI models such as EfficientNet or ResNet in image processing. However, though advanced CNN models under transfer learning or ViT based models led to high performing lung cancer detections, due to its intrinsic limitations in terms of correlation dependence and low interpretability due to complexity, expansions of deep learning models to lung cancer treatment analysis or causal intervention analysis simulations are still limited. Therefore, this research introduced LungCRCT: a latent causal representation learning based lung cancer analysis framework that retrieves causal representations of factors within the physical causal mechanism of lung cancer progression. With the use of advanced graph autoencoder based causal discovery algorithms with distance Correlation disentanglement and entropy-based image reconstruction refinement, LungCRCT not only enables causal intervention analysis for lung cancer treatments, but also leads to robust, yet extremely light downstream models in malignant tumor classification tasks with an AUC score of 93.91%.
In biomedical engineering, artificial intelligence has become a pivotal tool for enhancing medical diagnostics, particularly in medical image classification tasks such as detecting pneumonia from chest X-rays and breast cancer screening. However, real-world medical datasets frequently exhibit severe class imbalance, where positive samples substantially outnumber negative samples, leading to biased models with low recall rates for minority classes. This imbalance not only compromises diagnostic accuracy but also poses clinical misdiagnosis risks. To address this challenge, we propose SDA-QEC (Simplified Diffusion Augmentation with Quantum-Enhanced Classification), an innovative framework that integrates simplified diffusion-based data augmentation with quantum-enhanced feature discrimination. Our approach employs a lightweight diffusion augmentor to generate high-quality synthetic samples for minority classes, rebalancing the training distribution. Subsequently, a quantum feature layer embedded within MobileNetV2 architecture enhances the model's discriminative capability through high-dimensional feature mapping in Hilbert space. Comprehensive experiments on coronary angiography image classification demonstrate that SDA-QEC achieves 98.33% accuracy, 98.78% AUC, and 98.33% F1-score, significantly outperforming classical baselines including ResNet18, MobileNetV2, DenseNet121, and VGG16. Notably, our framework simultaneously attains 98.33% sensitivity and 98.33% specificity, achieving a balanced performance critical for clinical deployment. The proposed method validates the feasibility of integrating generative augmentation with quantum-enhanced modeling in real-world medical imaging tasks, offering a novel research pathway for developing highly reliable medical AI systems in small-sample, highly imbalanced, and high-risk diagnostic scenarios.
Accurate and robust polyp segmentation is essential for early colorectal cancer detection and for computer-aided diagnosis. While convolutional neural network-, Transformer-, and Mamba-based U-Net variants have achieved strong performance, they still struggle to capture geometric and structural cues, especially in low-contrast or cluttered colonoscopy scenes. To address this challenge, we propose a novel Geometric Prior-guided Module (GPM) that injects explicit geometric priors into U-Net-based architectures for polyp segmentation. Specifically, we fine-tune the Visual Geometry Grounded Transformer (VGGT) on a simulated ColonDepth dataset to estimate depth maps of polyp images tailored to the endoscopic domain. These depth maps are then processed by GPM to encode geometric priors into the encoder's feature maps, where they are further refined using spatial and channel attention mechanisms that emphasize both local spatial and global channel information. GPM is plug-and-play and can be seamlessly integrated into diverse U-Net variants. Extensive experiments on five public polyp segmentation datasets demonstrate consistent gains over three strong baselines. Code and the generated depth maps are available at: https://github.com/fvazqu/GPM-PolypSeg
Melanoma detection is vital for early diagnosis and effective treatment. While deep learning models on dermoscopic images have shown promise, they require specialized equipment, limiting their use in broader clinical settings. This study introduces a multi-modal melanoma detection system using conventional photo images, making it more accessible and versatile. Our system integrates image data with tabular metadata, such as patient demographics and lesion characteristics, to improve detection accuracy. It employs a multi-modal neural network combining image and metadata processing and supports a two-step model for cases with or without metadata. A three-stage pipeline further refines predictions by boosting algorithms and enhancing performance. To address the challenges of a highly imbalanced dataset, specific techniques were implemented to ensure robust training. An ablation study evaluated recent vision architectures, boosting algorithms, and loss functions, achieving a peak Partial ROC AUC of 0.18068 (0.2 maximum) and top-15 retrieval sensitivity of 0.78371. Results demonstrate that integrating photo images with metadata in a structured, multi-stage pipeline yields significant performance improvements. This system advances melanoma detection by providing a scalable, equipment-independent solution suitable for diverse healthcare environments, bridging the gap between specialized and general clinical practices.
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at https://github.com/mkang315/PanopMamba.
Contrast medium plays a pivotal role in radiological imaging, as it amplifies lesion conspicuity and improves detection for the diagnosis of tumor-related diseases. However, depending on the patient's health condition or the medical resources available, the use of contrast medium is not always feasible. Recent work has explored AI-based image translation to synthesize contrast-enhanced images directly from non-contrast scans, aims to reduce side effects and streamlines clinical workflows. Progress in this direction has been constrained by data limitations: (1) existing public datasets focus almost exclusively on brain-related paired MR modalities; (2) other collections include partially paired data but suffer from missing modalities/timestamps and imperfect spatial alignment; (3) explicit labeling of CT vs. CTC or DCE phases is often absent; (4) substantial resources remain private. To bridge this gap, we introduce the first public, fully paired, pan-cancer medical imaging dataset spanning 11 human organs. The MR data include complete dynamic contrast-enhanced (DCE) sequences covering all three phases (DCE1-DCE3), while the CT data provide paired non-contrast and contrast-enhanced acquisitions (CTC). The dataset is curated for anatomical correspondence, enabling rigorous evaluation of 1-to-1, N-to-1, and N-to-N translation settings (e.g., predicting DCE phases from non-contrast inputs). Built upon this resource, we establish a comprehensive benchmark. We report results from representative baselines of contemporary image-to-image translation. We release the dataset and benchmark to catalyze research on safe, effective contrast synthesis, with direct relevance to multi-organ oncology imaging workflows. Our code and dataset are publicly available at https://github.com/YifanChen02/PMPBench.
Early detection of malignant skin lesions is critical for improving patient outcomes in aggressive, metastatic skin cancers. This study evaluates a comprehensive system for preliminary skin lesion assessment that combines the clinically established ABCD rule of dermoscopy (analyzing Asymmetry, Borders, Color, and Dermoscopic Structures) with machine learning classification. Using a 1,000-image subset of the HAM10000 dataset, the system implements an automated, rule-based pipeline to compute a Total Dermoscopy Score (TDS) for each lesion. This handcrafted approach is compared against various machine learning solutions, including traditional classifiers (Logistic Regression, Random Forest, and SVM) and deep learning models. While the rule-based system provides high clinical interpretability, results indicate a performance bottleneck when reducing complex morphology to five numerical features. Experimental findings show that transfer learning with EfficientNet-B0 failed significantly due to domain shift between natural and medical images. In contrast, a custom three-layer Convolutional Neural Network (CNN) trained from scratch achieved 78.5% accuracy and 86.5% recall on median-filtered images, representing a 19-point accuracy improvement over traditional methods. The results demonstrate that direct pixel-level learning captures diagnostic patterns beyond handcrafted features and that purpose-built lightweight architectures can outperform large pretrained models for small, domain-specific medical datasets.
Breast cancer is one of the most common cancers among women worldwide, and its accurate and timely diagnosis plays a critical role in improving treatment outcomes. This thesis presents an innovative framework for detecting malignant masses in mammographic images by integrating the Pyramid Adaptive Atrous Convolution (PAAC) and Transformer architectures. The proposed approach utilizes Multi-Scale Feature Fusion to enhance the extraction of features from benign and malignant tissues and combines Dice Loss and Focal Loss functions to improve the model's learning process, effectively reducing errors in binary breast cancer classification and achieving high accuracy and efficiency. In this study, a comprehensive dataset of breast cancer images from INbreast, MIAS, and DDSM was preprocessed through data augmentation and contrast enhancement and resized to 227x227 pixels for model training. Leveraging the Transformer's ability to manage long-range dependencies with Self-Attention mechanisms, the proposed model achieved high accuracy in detecting cancerous masses, outperforming foundational models such as BreastNet, DeepMammo, Multi-Scale CNN, Swin-Unet, and SegFormer. The final evaluation results for the proposed model include an accuracy of 98.5\%, sensitivity of 97.8\%, specificity of 96.3\%, F1-score of 98.2\%, and overall precision of 97.9\%. These metrics demonstrate a significant improvement over traditional methods and confirm the model's effectiveness in identifying cancerous masses in complex scenarios and large datasets. This model shows potential as a reliable and efficient tool for breast cancer diagnosis and can be effectively integrated into medical diagnostic systems.
Assisting pathologists in the analysis of histopathological images has high clinical value, as it supports cancer detection and staging. In this context, histology foundation models have recently emerged. Among them, Vision-Language Models (VLMs) provide strong yet imperfect zero-shot predictions. We propose to refine these predictions by adapting Conditional Random Fields (CRFs) to histopathological applications, requiring no additional model training. We present HistoCRF, a CRF-based framework, with a novel definition of the pairwise potential that promotes label diversity and leverages expert annotations. We consider three experiments: without annotations, with expert annotations, and with iterative human-in-the-loop annotations that progressively correct misclassified patches. Experiments on five patch-level classification datasets covering different organs and diseases demonstrate average accuracy gains of 16.0% without annotations and 27.5% with only 100 annotations, compared to zero-shot predictions. Moreover, integrating a human in the loop reaches a further gain of 32.6% with the same number of annotations. The code will be made available on https://github.com/tgodelaine/HistoCRF.
In this work, we present a novel latent diffusion-based pipeline for 3D kidney anomaly detection on contrast-enhanced abdominal CT. The method combines Denoising Diffusion Probabilistic Models (DDPMs), Denoising Diffusion Implicit Models (DDIMs), and Vector-Quantized Generative Adversarial Networks (VQ-GANs). Unlike prior slice-wise approaches, our method operates directly on an image volume and leverages weak supervision with only case-level pseudo-labels. We benchmark our approach against state-of-the-art supervised segmentation and detection models. This study demonstrates the feasibility and promise of 3D latent diffusion for weakly supervised anomaly detection. While the current results do not yet match supervised baselines, they reveal key directions for improving reconstruction fidelity and lesion localization. Our findings provide an important step toward annotation-efficient, generative modeling of complex abdominal anatomy.