Abstract:Skin cancer is one of the most common cancers worldwide and early detection is critical for effective treatment. However, current AI diagnostic tools are often trained on datasets dominated by lighter skin tones, leading to reduced accuracy and fairness for people with darker skin. The International Skin Imaging Collaboration (ISIC) dataset, one of the most widely used benchmarks, contains over 70% light skin images while dark skins fewer than 8%. This imbalance poses a significant barrier to equitable healthcare delivery and highlights the urgent need for methods that address demographic diversity in medical imaging. This paper addresses this challenge of skin tone imbalance in automated skin cancer detection using dermoscopic images. To overcome this, we present a generative augmentation pipeline that fine-tunes a pre-trained Stable Diffusion model using Low-Rank Adaptation (LoRA) on the image dark-skin subset of the ISIC dataset and generates synthetic dermoscopic images conditioned on lesion type and skin tone. In this study, we investigated the utility of these images on two downstream tasks: lesion segmentation and binary classification. For segmentation, models trained on the augmented dataset and evaluated on held-out real images show consistent improvements in IoU, Dice coefficient, and boundary accuracy. These evalutions provides the verification of Generated dataset. For classification, an EfficientNet-B0 model trained on the augmented dataset achieved 92.14% accuracy. This paper demonstrates that synthetic data augmentation with Generative AI integration can substantially reduce bias with increase fairness in conventional dermatological diagnostics and open challenges for future directions.