Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
May 02, 2025
Abstract:Time series anomaly detection is critical for system monitoring and risk identification, across various domains, such as finance and healthcare. However, for most reconstruction-based approaches, detecting anomalies remains a challenge due to the complexity of sequential patterns in time series data. On the one hand, reconstruction-based techniques are susceptible to computational deviation stemming from anomalies, which can lead to impure representations of normal sequence patterns. On the other hand, they often focus on the time-domain dependencies of time series, while ignoring the alignment of frequency information beyond the time domain. To address these challenges, we propose a novel Frequency-augmented Convolutional Transformer (FreCT). FreCT utilizes patch operations to generate contrastive views and employs an improved Transformer architecture integrated with a convolution module to capture long-term dependencies while preserving local topology information. The introduced frequency analysis based on Fourier transformation could enhance the model's ability to capture crucial characteristics beyond the time domain. To protect the training quality from anomalies and improve the robustness, FreCT deploys stop-gradient Kullback-Leibler (KL) divergence and absolute error to optimize consistency information in both time and frequency domains. Extensive experiments on four public datasets demonstrate that FreCT outperforms existing methods in identifying anomalies.
Via

Apr 21, 2025
Abstract:Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.
Via

May 03, 2025
Abstract:Behind a set of rules in Deontic Defeasible Logic, there is a mapping process of normative background fragments. This process goes from text to rules and implicitly encompasses an explanation of the coded fragments. In this paper we deliver a methodology for \textit{legal coding} that starts with a fragment and goes onto a set of Deontic Defeasible Logic rules, involving a set of \textit{scenarios} to test the correctness of the coded fragments. The methodology is illustrated by the coding process of an example text. We then show the results of a series of experiments conducted with humans encoding a variety of normative backgrounds and corresponding cases in which we have measured the efforts made in the coding process, as related to some measurable features. To process these examples, a recently developed technology, Houdini, that allows reasoning in Deontic Defeasible Logic, has been employed. Finally we provide a technique to forecast time required in coding, that depends on factors such as knowledge of the legal domain, knowledge of the coding processes, length of the text, and a measure of \textit{depth} that refers to the length of the paths of legal references.
Via

Apr 04, 2025
Abstract:This study investigates the application of novel model architectures and large-scale foundational models in temporal series analysis of lower limb rehabilitation motion data, aiming to leverage advancements in machine learning and artificial intelligence to empower active rehabilitation guidance strategies for post-stroke patients in limb motor function recovery. Utilizing the SIAT-LLMD dataset of lower limb movement data proposed by the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, we systematically elucidate the implementation and analytical outcomes of the innovative xLSTM architecture and the foundational model Lag-Llama in short-term temporal prediction tasks involving joint kinematics and dynamics parameters. The research provides novel insights for AI-enabled medical rehabilitation applications, demonstrating the potential of cutting-edge model architectures and large-scale models in rehabilitation medicine temporal prediction. These findings establish theoretical foundations for future applications of personalized rehabilitation regimens, offering significant implications for the development of customized therapeutic interventions in clinical practice.
Via

Apr 22, 2025
Abstract:Analyzing multi-featured time series data is critical for space missions making efficient event detection, potentially onboard, essential for automatic analysis. However, limited onboard computational resources and data downlink constraints necessitate robust methods for identifying regions of interest in real time. This work presents an adaptive outlier detection algorithm based on the reconstruction error of Principal Component Analysis (PCA) for feature reduction, designed explicitly for space mission applications. The algorithm adapts dynamically to evolving data distributions by using Incremental PCA, enabling deployment without a predefined model for all possible conditions. A pre-scaling process normalizes each feature's magnitude while preserving relative variance within feature types. We demonstrate the algorithm's effectiveness in detecting space plasma events, such as distinct space environments, dayside and nightside transients phenomena, and transition layers through NASA's MMS mission observations. Additionally, we apply the method to NASA's THEMIS data, successfully identifying a dayside transient using onboard-available measurements.
* Accepted to ICCS 2025
Via

Apr 28, 2025
Abstract:Snow is an essential input for various land surface models. Seasonal snow estimates are available as snow water equivalent (SWE) from process-based reanalysis products or locally from in situ measurements. While the reanalysis products are computationally expensive and available at only fixed spatial and temporal resolutions, the in situ measurements are highly localized and sparse. To address these issues and enable the analysis of the effect of a large suite of physical, morphological, and geological conditions on the presence and amount of snow, we build a Long Short-Term Memory (LSTM) network, which is able to estimate the SWE based on time series input of the various physical/meteorological factors as well static spatial/morphological factors. Specifically, this model breaks down the SWE estimation into two separate tasks: (i) a classification task that indicates the presence/absence of snow on a specific day and (ii) a regression task that indicates the height of the SWE on a specific day in the case of snow presence. The model is trained using physical/in situ SWE measurements from the SNOw TELemetry (SNOTEL) snow pillows in the western United States. We will show that trained LSTM models have a classification accuracy of $\geq 93\%$ for the presence of snow and a coefficient of correlation of $\sim 0.9$ concerning their SWE estimates. We will also demonstrate that the models can generalize both spatially and temporally to previously unseen data.
* Preprint of journal paper in preparation. Details: 24 pages, 8
figures
Via

Apr 01, 2025
Abstract:The release of advanced Large Language Models (LLMs) such as ChatGPT and Copilot is changing the way text is created and may influence the content that we find on the web. This study investigated whether the release of these two popular LLMs coincided with a change in writing style in headlines and links on worldwide news websites. 175 NLP features were obtained for each text in a dataset of 451 million headlines/links. An interrupted time series analysis was applied for each of the 175 NLP features to evaluate whether there were any statistically significant sustained changes after the release dates of ChatGPT and/or Copilot. There were a total of 44 features that did not appear to have any significant sustained change after the release of ChatGPT/Copilot. A total of 91 other features did show significant change with ChatGPT and/or Copilot although significance with earlier control LLM release dates (GPT-1/2/3, Gopher) removed them from consideration. This initial analysis suggests these language models may have had a limited impact on the style of individual news headlines/links, with respect to only some NLP measures.
Via

Apr 05, 2025
Abstract:Transformer-based foundation models have emerged as a dominant paradigm in time series analysis, offering unprecedented capabilities in tasks such as forecasting, anomaly detection, classification, trend analysis and many more time series analytical tasks. This survey provides a comprehensive overview of the current state of the art pre-trained foundation models, introducing a novel taxonomy to categorize them across several dimensions. Specifically, we classify models by their architecture design, distinguishing between those leveraging patch-based representations and those operating directly on raw sequences. The taxonomy further includes whether the models provide probabilistic or deterministic predictions, and whether they are designed to work with univariate time series or can handle multivariate time series out of the box. Additionally, the taxonomy encompasses model scale and complexity, highlighting differences between lightweight architectures and large-scale foundation models. A unique aspect of this survey is its categorization by the type of objective function employed during training phase. By synthesizing these perspectives, this survey serves as a resource for researchers and practitioners, providing insights into current trends and identifying promising directions for future research in transformer-based time series modeling.
Via

Apr 08, 2025
Abstract:In exploring Predictive Health Management (PHM) strategies for Proton Exchange Membrane Fuel Cells (PEMFC), the Transformer model, widely used in data-driven approaches, excels in many fields but struggles with time series analysis due to its self-attention mechanism, which yields a complexity of the input sequence squared and low computational efficiency. It also faces challenges in capturing both global long-term dependencies and local details effectively. To tackle this, we propose the Temporal Scale Transformer (TSTransformer), an enhanced version of the inverted Transformer (iTransformer). Unlike traditional Transformers that treat each timestep as an input token, TSTransformer maps sequences of varying lengths into tokens at different stages for inter-sequence modeling, using attention to capture multivariate correlations and feed-forward networks (FFN) to encode sequence representations. By integrating a one-dimensional convolutional layer into the multivariate attention for multi-level scaling of K and V matrices, it improves local feature extraction, captures temporal scale characteristics, and reduces token count and computational costs. Experiments comparing TSTransformer with models like Long Short-Term Memory, iTransformer, and Transformer demonstrate its potential as a powerful tool for advancing PHM in renewable energy, effectively addressing the limitations of pure Transformer models in data-driven time series tasks.
* 7 figs, 10 pages
Via

May 02, 2025
Abstract:We study the problem of learning to stabilize (LTS) a linear time-invariant (LTI) system. Policy gradient (PG) methods for control assume access to an initial stabilizing policy. However, designing such a policy for an unknown system is one of the most fundamental problems in control, and it may be as hard as learning the optimal policy itself. Existing work on the LTS problem requires large data as it scales quadratically with the ambient dimension. We propose a two-phase approach that first learns the left unstable subspace of the system and then solves a series of discounted linear quadratic regulator (LQR) problems on the learned unstable subspace, targeting to stabilize only the system's unstable dynamics and reduce the effective dimension of the control space. We provide non-asymptotic guarantees for both phases and demonstrate that operating on the unstable subspace reduces sample complexity. In particular, when the number of unstable modes is much smaller than the state dimension, our analysis reveals that LTS on the unstable subspace substantially speeds up the stabilization process. Numerical experiments are provided to support this sample complexity reduction achieved by our approach.
Via
