This study investigates the application of novel model architectures and large-scale foundational models in temporal series analysis of lower limb rehabilitation motion data, aiming to leverage advancements in machine learning and artificial intelligence to empower active rehabilitation guidance strategies for post-stroke patients in limb motor function recovery. Utilizing the SIAT-LLMD dataset of lower limb movement data proposed by the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, we systematically elucidate the implementation and analytical outcomes of the innovative xLSTM architecture and the foundational model Lag-Llama in short-term temporal prediction tasks involving joint kinematics and dynamics parameters. The research provides novel insights for AI-enabled medical rehabilitation applications, demonstrating the potential of cutting-edge model architectures and large-scale models in rehabilitation medicine temporal prediction. These findings establish theoretical foundations for future applications of personalized rehabilitation regimens, offering significant implications for the development of customized therapeutic interventions in clinical practice.