Abstract:Snow is an essential input for various land surface models. Seasonal snow estimates are available as snow water equivalent (SWE) from process-based reanalysis products or locally from in situ measurements. While the reanalysis products are computationally expensive and available at only fixed spatial and temporal resolutions, the in situ measurements are highly localized and sparse. To address these issues and enable the analysis of the effect of a large suite of physical, morphological, and geological conditions on the presence and amount of snow, we build a Long Short-Term Memory (LSTM) network, which is able to estimate the SWE based on time series input of the various physical/meteorological factors as well static spatial/morphological factors. Specifically, this model breaks down the SWE estimation into two separate tasks: (i) a classification task that indicates the presence/absence of snow on a specific day and (ii) a regression task that indicates the height of the SWE on a specific day in the case of snow presence. The model is trained using physical/in situ SWE measurements from the SNOw TELemetry (SNOTEL) snow pillows in the western United States. We will show that trained LSTM models have a classification accuracy of $\geq 93\%$ for the presence of snow and a coefficient of correlation of $\sim 0.9$ concerning their SWE estimates. We will also demonstrate that the models can generalize both spatially and temporally to previously unseen data.
Abstract:A hybrid machine learning and process-based-modeling (PBM) approach is proposed and evaluated at a handful of AmeriFlux sites to simulate the top-layer soil moisture state. The Hybrid-PBM (HPBM) employed here uses the Noah land-surface model integrated with Gaussian Processes. It is designed to correct the model only in climatological situations similar to the training data else it reverts to the PBM. In this way, our approach avoids bad predictions in scenarios where similar training data is not available and incorporates our physical understanding of the system. Here we assume an autoregressive model and obtain out-of-sample results with upwards of a 3-fold reduction in the RMSE using a one-year leave-one-out cross-validation at each of the selected sites. A path is outlined for using hybrid modeling to build global land-surface models with the potential to significantly outperform the current state-of-the-art.