Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Sentiment Analysis": models, code, and papers

An Automatic Contextual Analysis and Clustering Classifiers Ensemble approach to Sentiment Analysis

May 29, 2017
Murtadha Talib AL-Sharuee, Fei Liu, Mahardhika Pratama

Products reviews are one of the major resources to determine the public sentiment. The existing literature on reviews sentiment analysis mainly utilizes supervised paradigm, which needs labeled data to be trained on and suffers from domain-dependency. This article addresses these issues by describes a completely automatic approach for sentiment analysis based on unsupervised ensemble learning. The method consists of two phases. The first phase is contextual analysis, which has five processes, namely (1) data preparation; (2) spelling correction; (3) intensifier handling; (4) negation handling and (5) contrast handling. The second phase comprises the unsupervised learning approach, which is an ensemble of clustering classifiers using a majority voting mechanism with different weight schemes. The base classifier of the ensemble method is a modified k-means algorithm. The base classifier is modified by extracting initial centroids from the feature set via using SentWordNet (SWN). We also introduce new sentiment analysis problems of Australian airlines and home builders which offer potential benchmark problems in the sentiment analysis field. Our experiments on datasets from different domains show that contextual analysis and the ensemble phases improve the clustering performance in term of accuracy, stability and generalization ability.

* This article is submitted to a journal 

Text Compression for Sentiment Analysis via Evolutionary Algorithms

Sep 20, 2017
Emmanuel Dufourq, Bruce A. Bassett

Can textual data be compressed intelligently without losing accuracy in evaluating sentiment? In this study, we propose a novel evolutionary compression algorithm, PARSEC (PARts-of-Speech for sEntiment Compression), which makes use of Parts-of-Speech tags to compress text in a way that sacrifices minimal classification accuracy when used in conjunction with sentiment analysis algorithms. An analysis of PARSEC with eight commercial and non-commercial sentiment analysis algorithms on twelve English sentiment data sets reveals that accurate compression is possible with (0%, 1.3%, 3.3%) loss in sentiment classification accuracy for (20%, 50%, 75%) data compression with PARSEC using LingPipe, the most accurate of the sentiment algorithms. Other sentiment analysis algorithms are more severely affected by compression. We conclude that significant compression of text data is possible for sentiment analysis depending on the accuracy demands of the specific application and the specific sentiment analysis algorithm used.

* 8 pages, 2 figures, 8 tables 

SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis

May 20, 2020
Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang, Feng Wu

Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at

* Accepted by ACL2020 

Sentiment Analysis on Speaker Specific Speech Data

Feb 17, 2018
Maghilnan S, Rajesh Kumar M

Sentiment analysis has evolved over past few decades, most of the work in it revolved around textual sentiment analysis with text mining techniques. But audio sentiment analysis is still in a nascent stage in the research community. In this proposed research, we perform sentiment analysis on speaker discriminated speech transcripts to detect the emotions of the individual speakers involved in the conversation. We analyzed different techniques to perform speaker discrimination and sentiment analysis to find efficient algorithms to perform this task.

* Accepted and Published in 2017 IEEE International Conference on Intelligent Computing and Control (I2C2), 23 Jun - 24 Jun 2017, India 

Deriving Emotions and Sentiments from Visual Content: A Disaster Analysis Use Case

Feb 03, 2020
Kashif Ahmad, Syed Zohaib, Nicola Conci, Ala Al-Fuqaha

Sentiment analysis aims to extract and express a person's perception, opinions and emotions towards an entity, object, product and a service, enabling businesses to obtain feedback from the consumers. The increasing popularity of the social networks and users' tendency towards sharing their feelings, expressions and opinions in text, visual and audio content has opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis of images and videos is relatively new. This article introduces visual sentiment analysis and contrasts it with textual sentiment analysis with emphasis on the opportunities and challenges in this nascent research area. We also propose a deep visual sentiment analyzer for disaster-related images as a use-case, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation and evaluations. We believe such rigorous analysis will provide a baseline for future research in the domain.


A Dataset and BERT-based Models for Targeted Sentiment Analysis on Turkish Texts

May 09, 2022
M. Melih Mutlu, Arzucan Özgür

Targeted Sentiment Analysis aims to extract sentiment towards a particular target from a given text. It is a field that is attracting attention due to the increasing accessibility of the Internet, which leads people to generate an enormous amount of data. Sentiment analysis, which in general requires annotated data for training, is a well-researched area for widely studied languages such as English. For low-resource languages such as Turkish, there is a lack of such annotated data. We present an annotated Turkish dataset suitable for targeted sentiment analysis. We also propose BERT-based models with different architectures to accomplish the task of targeted sentiment analysis. The results demonstrate that the proposed models outperform the traditional sentiment analysis models for the targeted sentiment analysis task.


Emotion helps Sentiment: A Multi-task Model for Sentiment and Emotion Analysis

Nov 28, 2019
Abhishek Kumar, Asif Ekbal, Daisuke Kawahra, Sadao Kurohashi

In this paper, we propose a two-layered multi-task attention based neural network that performs sentiment analysis through emotion analysis. The proposed approach is based on Bidirectional Long Short-Term Memory and uses Distributional Thesaurus as a source of external knowledge to improve the sentiment and emotion prediction. The proposed system has two levels of attention to hierarchically build a meaningful representation. We evaluate our system on the benchmark dataset of SemEval 2016 Task 6 and also compare it with the state-of-the-art systems on Stance Sentiment Emotion Corpus. Experimental results show that the proposed system improves the performance of sentiment analysis by 3.2 F-score points on SemEval 2016 Task 6 dataset. Our network also boosts the performance of emotion analysis by 5 F-score points on Stance Sentiment Emotion Corpus.

* Accepted in the Proceedings of The 2019 IEEE International Joint Conference on Neural Networks (IJCNN 2019) 

A Scalable, Lexicon Based Technique for Sentiment Analysis

Oct 08, 2014
Chetan Kaushik, Atul Mishra

Rapid increase in the volume of sentiment rich social media on the web has resulted in an increased interest among researchers regarding Sentimental Analysis and opinion mining. However, with so much social media available on the web, sentiment analysis is now considered as a big data task. Hence the conventional sentiment analysis approaches fails to efficiently handle the vast amount of sentiment data available now a days. The main focus of the research was to find such a technique that can efficiently perform sentiment analysis on big data sets. A technique that can categorize the text as positive, negative and neutral in a fast and accurate manner. In the research, sentiment analysis was performed on a large data set of tweets using Hadoop and the performance of the technique was measured in form of speed and accuracy. The experimental results shows that the technique exhibits very good efficiency in handling big sentiment data sets.

* International Journal in Foundations of Computer Science & Technology (IJFCST), Vol.4, No.5, September 2014 
* 9 pages 1 figure 2 tables 

A Survey on sentiment analysis in Persian: A Comprehensive System Perspective Covering Challenges and Advances in Resources, and Methods

Apr 30, 2021
Zeinab Rajabi, MohammadReza Valavi

Social media has been remarkably grown during the past few years. Nowadays, posting messages on social media websites has become one of the most popular Internet activities. The vast amount of user-generated content has made social media the most extensive data source of public opinion. Sentiment analysis is one of the techniques used to analyze user-generated data. The Persian language has specific features and thereby requires unique methods and models to be adopted for sentiment analysis, which are different from those in English language. Sentiment analysis in each language has specified prerequisites; hence, the direct use of methods, tools, and resources developed for English language in Persian has its limitations. The main target of this paper is to provide a comprehensive literature survey for state-of-the-art advances in Persian sentiment analysis. In this regard, the present study aims to investigate and compare the previous sentiment analysis studies on Persian texts and describe contributions presented in articles published in the last decade. First, the levels, approaches, and tasks for sentiment analysis are described. Then, a detailed survey of the sentiment analysis methods used for Persian texts is presented, and previous relevant works on Persian Language are discussed. Moreover, we present in this survey the authentic and published standard sentiment analysis resources and advances that have been done for Persian sentiment analysis. Finally, according to the state-of-the-art development of English sentiment analysis, some issues and challenges not being addressed in Persian texts are listed, and some guidelines and trends are provided for future research on Persian texts. The paper provides information to help new or established researchers in the field as well as industry developers who aim to deploy an operational complete sentiment analysis system.

* 31 pages, 2 figures, tables 5