Abstract:Evaluating social biases in language models (LMs) is crucial for ensuring fairness and minimizing the reinforcement of harmful stereotypes in AI systems. Existing benchmarks, such as the Bias Benchmark for Question Answering (BBQ), primarily focus on Western contexts, limiting their applicability to the Indian context. To address this gap, we introduce BharatBBQ, a culturally adapted benchmark designed to assess biases in Hindi, English, Marathi, Bengali, Tamil, Telugu, Odia, and Assamese. BharatBBQ covers 13 social categories, including 3 intersectional groups, reflecting prevalent biases in the Indian sociocultural landscape. Our dataset contains 49,108 examples in one language that are expanded using translation and verification to 392,864 examples in eight different languages. We evaluate five multilingual LM families across zero and few-shot settings, analyzing their bias and stereotypical bias scores. Our findings highlight persistent biases across languages and social categories and often amplified biases in Indian languages compared to English, demonstrating the necessity of linguistically and culturally grounded benchmarks for bias evaluation.
Abstract:We propose a unified food-domain QA framework that combines a large-scale multimodal knowledge graph (MMKG) with generative AI. Our MMKG links 13,000 recipes, 3,000 ingredients, 140,000 relations, and 14,000 images. We generate 40,000 QA pairs using 40 templates and LLaVA/DeepSeek augmentation. Joint fine-tuning of Meta LLaMA 3.1-8B and Stable Diffusion 3.5-Large improves BERTScore by 16.2\%, reduces FID by 37.8\%, and boosts CLIP alignment by 31.1\%. Diagnostic analyses-CLIP-based mismatch detection (35.2\% to 7.3\%) and LLaVA-driven hallucination checks-ensure factual and visual fidelity. A hybrid retrieval-generation strategy achieves 94.1\% accurate image reuse and 85\% adequacy in synthesis. Our results demonstrate that structured knowledge and multimodal generation together enhance reliability and diversity in food QA.
Abstract:AI-based judicial assistance and case prediction have been extensively studied in criminal and civil domains, but remain largely unexplored in consumer law, especially in India. In this paper, we present Nyay-Darpan, a novel two-in-one framework that (i) summarizes consumer case files and (ii) retrieves similar case judgements to aid decision-making in consumer dispute resolution. Our methodology not only addresses the gap in consumer law AI tools but also introduces an innovative approach to evaluate the quality of the summary. The term 'Nyay-Darpan' translates into 'Mirror of Justice', symbolizing the ability of our tool to reflect the core of consumer disputes through precise summarization and intelligent case retrieval. Our system achieves over 75 percent accuracy in similar case prediction and approximately 70 percent accuracy across material summary evaluation metrics, demonstrating its practical effectiveness. We will publicly release the Nyay-Darpan framework and dataset to promote reproducibility and facilitate further research in this underexplored yet impactful domain.
Abstract:Bias and stereotypes in language models can cause harm, especially in sensitive areas like content moderation and decision-making. This paper addresses bias and stereotype detection by exploring how jointly learning these tasks enhances model performance. We introduce StereoBias, a unique dataset labeled for bias and stereotype detection across five categories: religion, gender, socio-economic status, race, profession, and others, enabling a deeper study of their relationship. Our experiments compare encoder-only models and fine-tuned decoder-only models using QLoRA. While encoder-only models perform well, decoder-only models also show competitive results. Crucially, joint training on bias and stereotype detection significantly improves bias detection compared to training them separately. Additional experiments with sentiment analysis confirm that the improvements stem from the connection between bias and stereotypes, not multi-task learning alone. These findings highlight the value of leveraging stereotype information to build fairer and more effective AI systems.
Abstract:Although mathematics is often considered culturally neutral, the way mathematical problems are presented can carry implicit cultural context. Existing benchmarks like GSM8K are predominantly rooted in Western norms, including names, currencies, and everyday scenarios. In this work, we create culturally adapted variants of the GSM8K test set for five regions Africa, India, China, Korea, and Japan using prompt-based transformations followed by manual verification. We evaluate six large language models (LLMs), ranging from 8B to 72B parameters, across five prompting strategies to assess their robustness to cultural variation in math problem presentation. Our findings reveal a consistent performance gap: models perform best on the original US-centric dataset and comparatively worse on culturally adapted versions. However, models with reasoning capabilities are more resilient to these shifts, suggesting that deeper reasoning helps bridge cultural presentation gaps in mathematical tasks
Abstract:Pragmatics, the ability to infer meaning beyond literal interpretation, is crucial for social cognition and communication. While LLMs have been benchmarked for their pragmatic understanding, improving their performance remains underexplored. Existing methods rely on annotated labels but overlook the reasoning process humans naturally use to interpret implicit meaning. To bridge this gap, we introduce a novel pragmatic dataset, ImpliedMeaningPreference, that includes explicit reasoning (thoughts) for both correct and incorrect interpretations. Through preference-tuning and supervised fine-tuning, we demonstrate that thought-based learning significantly enhances LLMs' pragmatic understanding, improving accuracy by 11.12% across model families. We further discuss a transfer-learning study where we evaluate the performance of thought-based training for the other tasks of pragmatics (presupposition, deixis) that are not seen during the training time and observe an improvement of 16.10% compared to label-trained models.
Abstract:Stereotypes are known to be highly pernicious, making their detection critically important. However, current research predominantly focuses on detecting and evaluating stereotypical biases in LLMs, leaving the study of stereotypes in its early stages. Many studies have failed to clearly distinguish between stereotypes and stereotypical biases, which has significantly slowed progress in advancing research in this area. Stereotype and anti-stereotype detection is a problem that requires knowledge of society; hence, it is one of the most difficult areas in Responsible AI. This work investigates this task, where we propose a four-tuple definition and provide precise terminology distinguishing stereotype, anti-stereotype, stereotypical bias, and bias, offering valuable insights into their various aspects. In this paper, we propose StereoDetect, a high-quality benchmarking dataset curated for this task by optimally utilizing current datasets such as StereoSet and WinoQueer, involving a manual verification process and the transfer of semantic information. We demonstrate that language models for reasoning with fewer than 10B parameters often get confused when detecting anti-stereotypes. We also demonstrate the critical importance of well-curated datasets by comparing our model with other current models for stereotype detection. The dataset and code is available at https://github.com/KaustubhShejole/StereoDetect.
Abstract:Intent classification is crucial for conversational agents (chatbots), and deep learning models perform well in this area. However, little research has been done on the explainability of intent classification due to the absence of suitable benchmark data. Human annotation of explanation signals in text samples is time-consuming and costly. However, from inspection of data on intent classification, we see that, more often than not, the main verb denotes the action, and the direct object indicates the domain of conversation, serving as explanation signals for intent. This observation enables us to hypothesize that the main predicate in the text utterances, along with the arguments of the main predicate, can serve as explanation signals. Leveraging this, we introduce a new technique to automatically augment text samples from intent classification datasets with word-level explanations. We mark main predicates (primarily verbs) and their arguments (dependency relations) as explanation signals in benchmark intent classification datasets ATIS and SNIPS, creating a unique 21k-instance dataset for explainability. Further, we experiment with deep learning and language models. We observe that models that work well for classification do not perform well in explainability metrics like plausibility and faithfulness. We also observe that guiding models to focus on explanation signals from our dataset during training improves the plausibility Token F1 score by 3-4%, improving the model's reasoning.
Abstract:Automatic Post-Editing (APE) systems often struggle with over-correction, where unnecessary modifications are made to a translation, diverging from the principle of minimal editing. In this paper, we propose a novel technique to mitigate over-correction by incorporating word-level Quality Estimation (QE) information during the decoding process. This method is architecture-agnostic, making it adaptable to any APE system, regardless of the underlying model or training approach. Our experiments on English-German, English-Hindi, and English-Marathi language pairs show the proposed approach yields significant improvements over their corresponding baseline APE systems, with TER gains of $0.65$, $1.86$, and $1.44$ points, respectively. These results underscore the complementary relationship between QE and APE tasks and highlight the effectiveness of integrating QE information to reduce over-correction in APE systems.
Abstract:Humblebragging is a phenomenon where individuals present self-promotional statements under the guise of modesty or complaints. For example, a statement like, "Ugh, I can't believe I got promoted to lead the entire team. So stressful!", subtly highlights an achievement while pretending to be complaining. Detecting humblebragging is important for machines to better understand the nuances of human language, especially in tasks like sentiment analysis and intent recognition. However, this topic has not yet been studied in computational linguistics. For the first time, we introduce the task of automatically detecting humblebragging in text. We formalize the task by proposing a 4-tuple definition of humblebragging and evaluate machine learning, deep learning, and large language models (LLMs) on this task, comparing their performance with humans. We also create and release a dataset called HB24, containing 3,340 humblebrags generated using GPT-4o. Our experiments show that detecting humblebragging is non-trivial, even for humans. Our best model achieves an F1-score of 0.88. This work lays the foundation for further exploration of this nuanced linguistic phenomenon and its integration into broader natural language understanding systems.