Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
In this paper, we investigate optimization problems with nonnegative and orthogonal constraints, where any feasible matrix of size $n \times p$ exhibits a sparsity pattern such that each row accommodates at most one nonzero entry. Our analysis demonstrates that, by fixing the support set, the global solution of the minimization subproblem for the proximal linearization of the objective function can be computed in closed form with at most $n$ nonzero entries. Exploiting this structural property offers a powerful avenue for dramatically enhancing computational efficiency. Guided by this insight, we propose a support-set algorithm preserving strictly the feasibility of iterates. A central ingredient is a strategically devised update scheme for support sets that adjusts the placement of nonzero entries. We establish the global convergence of the support-set algorithm to a first-order stationary point, and show that its iteration complexity required to reach an $\epsilon$-approximate first-order stationary point is $O (\epsilon^{-2})$. Numerical results are strongly in favor of our algorithm in real-world applications, including nonnegative PCA, clustering, and community detection.
In object detection, a well-defined similarity metric can significantly enhance model performance. Currently, the IoU-based similarity metric is the most commonly preferred choice for detectors. However, detectors using IoU as a similarity metric often perform poorly when detecting small objects because of their sensitivity to minor positional deviations. To address this issue, recent studies have proposed the Wasserstein Distance as an alternative to IoU for measuring the similarity of Gaussian-distributed bounding boxes. However, we have observed that the Wasserstein Distance lacks scale invariance, which negatively impacts the model's generalization capability. Additionally, when used as a loss function, its independent optimization of the center attributes leads to slow model convergence and unsatisfactory detection precision. To address these challenges, we introduce the Gaussian Combined Distance (GCD). Through analytical examination of GCD and its gradient, we demonstrate that GCD not only possesses scale invariance but also facilitates joint optimization, which enhances model localization performance. Extensive experiments on the AI-TOD-v2 dataset for tiny object detection show that GCD, as a bounding box regression loss function and label assignment metric, achieves state-of-the-art performance across various detectors. We further validated the generalizability of GCD on the MS-COCO-2017 and Visdrone-2019 datasets, where it outperforms the Wasserstein Distance across diverse scales of datasets. Code is available at https://github.com/MArKkwanGuan/mmdet-GCD.
Recent studies have demonstrated that incorporating trainable prompts into pretrained models enables effective incremental learning. However, the application of prompts in incremental object detection (IOD) remains underexplored. Existing prompts pool based approaches assume disjoint class sets across incremental tasks, which are unsuitable for IOD as they overlook the inherent co-occurrence phenomenon in detection images. In co-occurring scenarios, unlabeled objects from previous tasks may appear in current task images, leading to confusion in prompts pool. In this paper, we hold that prompt structures should exhibit adaptive consolidation properties across tasks, with constrained updates to prevent catastrophic forgetting. Motivated by this, we introduce Parameterized Prompts for Incremental Object Detection (P$^2$IOD). Leveraging neural networks global evolution properties, P$^2$IOD employs networks as the parameterized prompts to adaptively consolidate knowledge across tasks. To constrain prompts structure updates, P$^2$IOD further engages a parameterized prompts fusion strategy. Extensive experiments on PASCAL VOC2007 and MS COCO datasets demonstrate that P$^2$IOD's effectiveness in IOD and achieves the state-of-the-art performance among existing baselines.
Vision-language models (VLMs) often struggle to generate accurate and detailed captions for high-resolution images since they are typically pre-trained on low-resolution inputs (e.g., 224x224 or 336x336 pixels). Downscaling high-resolution images to these dimensions may result in the loss of visual details and the omission of important objects. To address this limitation, we propose a novel pipeline that integrates vision-language models, large language models (LLMs), and object detection systems to enhance caption quality. Our proposed pipeline refines captions through a novel, multi-stage process. Given a high-resolution image, an initial caption is first generated using a VLM, and key objects in the image are then identified by an LLM. The LLM predicts additional objects likely to co-occur with the identified key objects, and these predictions are verified by object detection systems. Newly detected objects not mentioned in the initial caption undergo focused, region-specific captioning to ensure they are incorporated. This process enriches caption detail while reducing hallucinations by removing references to undetected objects. We evaluate the enhanced captions using pairwise comparison and quantitative scoring from large multimodal models, along with a benchmark for hallucination detection. Experiments on a curated dataset of high-resolution images demonstrate that our pipeline produces more detailed and reliable image captions while effectively minimizing hallucinations.
We present MLPerf Automotive, the first standardized public benchmark for evaluating Machine Learning systems that are deployed for AI acceleration in automotive systems. Developed through a collaborative partnership between MLCommons and the Autonomous Vehicle Computing Consortium, this benchmark addresses the need for standardized performance evaluation methodologies in automotive machine learning systems. Existing benchmark suites cannot be utilized for these systems since automotive workloads have unique constraints including safety and real-time processing that distinguish them from the domains that previously introduced benchmarks target. Our benchmarking framework provides latency and accuracy metrics along with evaluation protocols that enable consistent and reproducible performance comparisons across different hardware platforms and software implementations. The first iteration of the benchmark consists of automotive perception tasks in 2D object detection, 2D semantic segmentation, and 3D object detection. We describe the methodology behind the benchmark design including the task selection, reference models, and submission rules. We also discuss the first round of benchmark submissions and the challenges involved in acquiring the datasets and the engineering efforts to develop the reference implementations. Our benchmark code is available at https://github.com/mlcommons/mlperf_automotive.
Recent advances in 4D imaging radar have enabled robust perception in adverse weather, while camera sensors provide dense semantic information. Fusing the these complementary modalities has great potential for cost-effective 3D perception. However, most existing camera-radar fusion methods are limited to single-frame inputs, capturing only a partial view of the scene. The incomplete scene information, compounded by image degradation and 4D radar sparsity, hinders overall detection performance. In contrast, multi-frame fusion offers richer spatiotemporal information but faces two challenges: achieving robust and effective object feature fusion across frames and modalities, and mitigating the computational cost of redundant feature extraction. Consequently, we propose M^3Detection, a unified multi-frame 3D object detection framework that performs multi-level feature fusion on multi-modal data from camera and 4D imaging radar. Our framework leverages intermediate features from the baseline detector and employs the tracker to produce reference trajectories, improving computational efficiency and providing richer information for second-stage. In the second stage, we design a global-level inter-object feature aggregation module guided by radar information to align global features across candidate proposals and a local-level inter-grid feature aggregation module that expands local features along the reference trajectories to enhance fine-grained object representation. The aggregated features are then processed by a trajectory-level multi-frame spatiotemporal reasoning module to encode cross-frame interactions and enhance temporal representation. Extensive experiments on the VoD and TJ4DRadSet datasets demonstrate that M^3Detection achieves state-of-the-art 3D detection performance, validating its effectiveness in multi-frame detection with camera-4D imaging radar fusion.
Deep neural networks (DNNs) have achieved remarkable success in computer vision tasks such as image classification, segmentation, and object detection. However, they are vulnerable to adversarial attacks, which can cause incorrect predictions with small perturbations in input images. Addressing this issue is crucial for deploying robust deep-learning systems. This paper presents a novel approach that utilizes contrastive learning for adversarial defense, a previously unexplored area. Our method leverages the contrastive loss function to enhance the robustness of classification models by training them with both clean and adversarially perturbed images. By optimizing the model's parameters alongside the perturbations, our approach enables the network to learn robust representations that are less susceptible to adversarial attacks. Experimental results show significant improvements in the model's robustness against various types of adversarial perturbations. This suggests that contrastive loss helps extract more informative and resilient features, contributing to the field of adversarial robustness in deep learning.
Autonomous Vehicles (AVs) are transforming the future of transportation through advances in intelligent perception, decision-making, and control systems. However, their success is tied to one core capability, reliable object detection in complex and multimodal environments. While recent breakthroughs in Computer Vision (CV) and Artificial Intelligence (AI) have driven remarkable progress, the field still faces a critical challenge as knowledge remains fragmented across multimodal perception, contextual reasoning, and cooperative intelligence. This survey bridges that gap by delivering a forward-looking analysis of object detection in AVs, emphasizing emerging paradigms such as Vision-Language Models (VLMs), Large Language Models (LLMs), and Generative AI rather than re-examining outdated techniques. We begin by systematically reviewing the fundamental spectrum of AV sensors (camera, ultrasonic, LiDAR, and Radar) and their fusion strategies, highlighting not only their capabilities and limitations in dynamic driving environments but also their potential to integrate with recent advances in LLM/VLM-driven perception frameworks. Next, we introduce a structured categorization of AV datasets that moves beyond simple collections, positioning ego-vehicle, infrastructure-based, and cooperative datasets (e.g., V2V, V2I, V2X, I2I), followed by a cross-analysis of data structures and characteristics. Ultimately, we analyze cutting-edge detection methodologies, ranging from 2D and 3D pipelines to hybrid sensor fusion, with particular attention to emerging transformer-driven approaches powered by Vision Transformers (ViTs), Large and Small Language Models (SLMs), and VLMs. By synthesizing these perspectives, our survey delivers a clear roadmap of current capabilities, open challenges, and future opportunities.
To address the challenges in UAV object detection, such as complex backgrounds, severe occlusion, dense small objects, and varying lighting conditions,this paper proposes PT-DETR based on RT-DETR, a novel detection algorithm specifically designed for small objects in UAV imagery. In the backbone network, we introduce the Partially-Aware Detail Focus (PADF) Module to enhance feature extraction for small objects. Additionally,we design the Median-Frequency Feature Fusion (MFFF) module,which effectively improves the model's ability to capture small-object details and contextual information. Furthermore,we incorporate Focaler-SIoU to strengthen the model's bounding box matching capability and increase its sensitivity to small-object features, thereby further enhancing detection accuracy and robustness. Compared with RT-DETR, our PT-DETR achieves mAP improvements of 1.6% and 1.7% on the VisDrone2019 dataset with lower computational complexity and fewer parameters, demonstrating its robustness and feasibility for small-object detection tasks.
The main goal of this paper is to study how often cookie banners that comply with the General Data Protection Regulation (GDPR) contain aesthetic manipulation, a design tactic to draw users' attention to the button that permits personal data sharing. As a byproduct of this goal, we also evaluate how frequently the banners comply with GDPR and the recommendations of national data protection authorities regarding banner designs. We visited 2,579 websites and identified the type of cookie banner implemented. Although 45% of the relevant websites have fully compliant banners, we found aesthetic manipulation on 38% of the compliant banners. Unlike prior studies of aesthetic manipulation, we use a computer vision model for salient object detection to measure how salient (i.e., attention-drawing) each banner element is. This enables the discovery of new types of aesthetic manipulation (e.g., button placement), and leads us to conclude that aesthetic manipulation is more common than previously reported (38% vs 27% of banners). To study the effects of user and/or website location on cookie banner design, we include websites within the European Union (EU), where privacy regulation enforcement is more stringent, and websites outside the EU. We visited websites from IP addresses in the EU and from IP addresses in the United States (US). We find that 13.9% of EU websites change their banner design when the user is from the US, and EU websites are roughly 48.3% more likely to use aesthetic manipulation than non-EU websites, highlighting their innovative responses to privacy regulation.