Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Object Detection": models, code, and papers

Detect-and-describe: Joint learning framework for detection and description of objects

Apr 19, 2022
Addel Zafar, Umar Khalid

Traditional object detection answers two questions; "what" (what the object is?) and "where" (where the object is?). "what" part of the object detection can be fine-grained further i.e. "what type", "what shape" and "what material" etc. This results in the shifting of the object detection tasks to the object description paradigm. Describing an object provides additional detail that enables us to understand the characteristics and attributes of the object ("plastic boat" not just boat, "glass bottle" not just bottle). This additional information can implicitly be used to gain insight into unseen objects (e.g. unknown object is "metallic", "has wheels"), which is not possible in traditional object detection. In this paper, we present a new approach to simultaneously detect objects and infer their attributes, we call it Detect and Describe (DaD) framework. DaD is a deep learning-based approach that extends object detection to object attribute prediction as well. We train our model on aPascal train set and evaluate our approach on aPascal test set. We achieve 97.0% in Area Under the Receiver Operating Characteristic Curve (AUC) for object attributes prediction on aPascal test set. We also show qualitative results for object attribute prediction on unseen objects, which demonstrate the effectiveness of our approach for describing unknown objects.


Focus-and-Detect: A Small Object Detection Framework for Aerial Images

Mar 24, 2022
Onur Can Koyun, Reyhan Kevser Keser, İbrahim Batuhan Akkaya, Behçet Uğur Töreyin

Despite recent advances, object detection in aerial images is still a challenging task. Specific problems in aerial images makes the detection problem harder, such as small objects, densely packed objects, objects in different sizes and with different orientations. To address small object detection problem, we propose a two-stage object detection framework called "Focus-and-Detect". The first stage which consists of an object detector network supervised by a Gaussian Mixture Model, generates clusters of objects constituting the focused regions. The second stage, which is also an object detector network, predicts objects within the focal regions. Incomplete Box Suppression (IBS) method is also proposed to overcome the truncation effect of region search approach. Results indicate that the proposed two-stage framework achieves an AP score of 42.06 on VisDrone validation dataset, surpassing all other state-of-the-art small object detection methods reported in the literature, to the best of authors' knowledge.

* Signal Processing: Image Communication, Volume 104, May 2022, 116675 
* 12 pages, 6 figures 

Detective: An Attentive Recurrent Model for Sparse Object Detection

Apr 25, 2020
Amine Kechaou, Manuel Martinez, Monica Haurilet, Rainer Stiefelhagen

In this work, we present Detective - an attentive object detector that identifies objects in images in a sequential manner. Our network is based on an encoder-decoder architecture, where the encoder is a convolutional neural network, and the decoder is a convolutional recurrent neural network coupled with an attention mechanism. At each iteration, our decoder focuses on the relevant parts of the image using an attention mechanism, and then estimates the object's class and the bounding box coordinates. Current object detection models generate dense predictions and rely on post-processing to remove duplicate predictions. Detective is a sparse object detector that generates a single bounding box per object instance. However, training a sparse object detector is challenging, as it requires the model to reason at the instance level and not just at the class and spatial levels. We propose a training mechanism based on the Hungarian algorithm and a loss that balances the localization and classification tasks. This allows Detective to achieve promising results on the PASCAL VOC object detection dataset. Our experiments demonstrate that sparse object detection is possible and has a great potential for future developments in applications where the order of the objects to be predicted is of interest.


Object DGCNN: 3D Object Detection using Dynamic Graphs

Oct 13, 2021
Yue Wang, Justin Solomon

3D object detection often involves complicated training and testing pipelines, which require substantial domain knowledge about individual datasets. Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds. Our method models 3D object detection as message passing on a dynamic graph, generalizing the DGCNN framework to predict a set of objects. In our construction, we remove the necessity of post-processing via object confidence aggregation or non-maximum suppression. To facilitate object detection from sparse point clouds, we also propose a set-to-set distillation approach customized to 3D detection. This approach aligns the outputs of the teacher model and the student model in a permutation-invariant fashion, significantly simplifying knowledge distillation for the 3D detection task. Our method achieves state-of-the-art performance on autonomous driving benchmarks. We also provide abundant analysis of the detection model and distillation framework.

* Accepted to NeurIPS 2021 

Fast detection of multiple objects in traffic scenes with a common detection framework

Oct 12, 2015
Qichang Hu, Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel, Fatih Porikli

Traffic scene perception (TSP) aims to real-time extract accurate on-road environment information, which in- volves three phases: detection of objects of interest, recognition of detected objects, and tracking of objects in motion. Since recognition and tracking often rely on the results from detection, the ability to detect objects of interest effectively plays a crucial role in TSP. In this paper, we focus on three important classes of objects: traffic signs, cars, and cyclists. We propose to detect all the three important objects in a single learning based detection framework. The proposed framework consists of a dense feature extractor and detectors of three important classes. Once the dense features have been extracted, these features are shared with all detectors. The advantage of using one common framework is that the detection speed is much faster, since all dense features need only to be evaluated once in the testing phase. In contrast, most previous works have designed specific detectors using different features for each of these objects. To enhance the feature robustness to noises and image deformations, we introduce spatially pooled features as a part of aggregated channel features. In order to further improve the generalization performance, we propose an object subcategorization method as a means of capturing intra-class variation of objects. We experimentally demonstrate the effectiveness and efficiency of the proposed framework in three detection applications: traffic sign detection, car detection, and cyclist detection. The proposed framework achieves the competitive performance with state-of- the-art approaches on several benchmark datasets.

* Appearing in IEEE Transactions on Intelligent Transportation Systems 

PPDM: Parallel Point Detection and Matching for Real-time Human-Object Interaction Detection

Dec 30, 2019
Yue Liao, Si Liu, Fei Wang, Yanjie Chen, Jiashi Feng

We propose a single-stage Human-Object Interaction (HOI) detection method that has outperformed all existing methods on HICO-DET dataset at 37 fps on a single Titan XP GPU. It is the first real-time HOI detection method. Conventional HOI detection methods are composed of two stages, i.e., human-object proposals generation, and proposals classification. Their effectiveness and efficiency are limited by the sequential and separate architecture. In this paper, we propose a Parallel Point Detection and Matching (PPDM) HOI detection framework. In PPDM, an HOI is defined as a point triplet < human point, interaction point, object point>. Human and object points are the center of the detection boxes, and the interaction point is the midpoint of the human and object points. PPDM contains two parallel branches, namely point detection branch and point matching branch. The point detection branch predicts three points. Simultaneously, the point matching branch predicts two displacements from the interaction point to its corresponding human and object points. The human point and the object point originated from the same interaction point are considered as matched pairs. In our novel parallel architecture, the interaction points implicitly provide context and regularization for human and object detection. The isolated detection boxes are unlikely to form meaning HOI triplets are suppressed, which increases the precision of HOI detection. Moreover, the matching between human and object detection boxes is only applied around limited numbers of filtered candidate interaction points, which saves much computational cost. Additionally, we build a new applicationoriented database named HOI-A, which severs as a good supplement to the existing datasets. The source code and the dataset will be made publicly available to facilitate the development of HOI detection.

* Tech Report 

Multiple receptive fields and small-object-focusing weakly-supervised segmentation network for fast object detection

May 22, 2019
Siyang Sun, Yingjie Yin, Xingang Wang, De Xu, Yuan Zhao, Haifeng Shen

Object detection plays an important role in various visual applications. However, the precision and speed of detector are usually contradictory. One main reason for fast detectors' precision reduction is that small objects are hard to be detected. To address this problem, we propose a multiple receptive field and small-object-focusing weakly-supervised segmentation network (MRFSWSnet) to achieve fast object detection. In MRFSWSnet, multiple receptive fields block (MRF) is used to pay attention to the object and its adjacent background's different spatial location with different weights to enhance the feature's discriminability. In addition, in order to improve the accuracy of small object detection, a small-object-focusing weakly-supervised segmentation module which only focuses on small object instead of all objects is integrated into the detection network for auxiliary training to improve the precision of small object detection. Extensive experiments show the effectiveness of our method on both PASCAL VOC and MS COCO detection datasets. In particular, with a lower resolution version of 300x300, MRFSWSnet achieves 80.9% mAP on VOC2007 test with an inference speed of 15 milliseconds per frame, which is the state-of-the-art detector among real-time detectors.


Integrated Object Detection and Tracking with Tracklet-Conditioned Detection

Nov 27, 2018
Zheng Zhang, Dazhi Cheng, Xizhou Zhu, Stephen Lin, Jifeng Dai

Accurate detection and tracking of objects is vital for effective video understanding. In previous work, the two tasks have been combined in a way that tracking is based heavily on detection, but the detection benefits marginally from the tracking. To increase synergy, we propose to more tightly integrate the tasks by conditioning the object detection in the current frame on tracklets computed in prior frames. With this approach, the object detection results not only have high detection responses, but also improved coherence with the existing tracklets. This greater coherence leads to estimated object trajectories that are smoother and more stable than the jittered paths obtained without tracklet-conditioned detection. Over extensive experiments, this approach is shown to achieve state-of-the-art performance in terms of both detection and tracking accuracy, as well as noticeable improvements in tracking stability.


Evaluating Salient Object Detection in Natural Images with Multiple Objects having Multi-level Saliency

Mar 19, 2020
Gökhan Yildirim, Debashis Sen, Mohan Kankanhalli, Sabine Süsstrunk

Salient object detection is evaluated using binary ground truth with the labels being salient object class and background. In this paper, we corroborate based on three subjective experiments on a novel image dataset that objects in natural images are inherently perceived to have varying levels of importance. Our dataset, named SalMoN (saliency in multi-object natural images), has 588 images containing multiple objects. The subjective experiments performed record spontaneous attention and perception through eye fixation duration, point clicking and rectangle drawing. As object saliency in a multi-object image is inherently multi-level, we propose that salient object detection must be evaluated for the capability to detect all multi-level salient objects apart from the salient object class detection capability. For this purpose, we generate multi-level maps as ground truth corresponding to all the dataset images using the results of the subjective experiments, with the labels being multi-level salient objects and background. We then propose the use of mean absolute error, Kendall's rank correlation and average area under precision-recall curve to evaluate existing salient object detection methods on our multi-level saliency ground truth dataset. Approaches that represent saliency detection on images as local-global hierarchical processing of a graph perform well in our dataset.

* IET Image Processing, 2019 
* Accepted Article