Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jun 09, 2025
Abstract:Despite recent advances in retrieval-augmented generation (RAG) for video understanding, effectively understanding long-form video content remains underexplored due to the vast scale and high complexity of video data. Current RAG approaches typically segment videos into fixed-length chunks, which often disrupts the continuity of contextual information and fails to capture authentic scene boundaries. Inspired by the human ability to naturally organize continuous experiences into coherent scenes, we present SceneRAG, a unified framework that leverages large language models to segment videos into narrative-consistent scenes by processing ASR transcripts alongside temporal metadata. SceneRAG further sharpens these initial boundaries through lightweight heuristics and iterative correction. For each scene, the framework fuses information from both visual and textual modalities to extract entity relations and dynamically builds a knowledge graph, enabling robust multi-hop retrieval and generation that account for long-range dependencies. Experiments on the LongerVideos benchmark, featuring over 134 hours of diverse content, confirm that SceneRAG substantially outperforms prior baselines, achieving a win rate of up to 72.5 percent on generation tasks.
Via

Jun 11, 2025
Abstract:Simultaneous electrocardiography (ECG) and phonocardiogram (PCG) provide a comprehensive, multimodal perspective on cardiac function by capturing the heart's electrical and mechanical activities, respectively. However, the distinct and overlapping information content of these signals, as well as their potential for mutual reconstruction and biomarker extraction, remains incompletely understood, especially under varying physiological conditions and across individuals. In this study, we systematically investigate the common and exclusive characteristics of ECG and PCG using the EPHNOGRAM dataset of simultaneous ECG-PCG recordings during rest and exercise. We employ a suite of linear and nonlinear machine learning models, including non-causal LSTM networks, to reconstruct each modality from the other and analyze the influence of causality, physiological state, and cross-subject variability. Our results demonstrate that nonlinear models, particularly non-causal LSTM, provide superior reconstruction performance, with reconstructing ECG from PCG proving more tractable than the reverse. Exercise and cross-subject scenarios present significant challenges, but envelope-based modeling that utilizes instantaneous amplitude features substantially improves cross-subject generalizability for cross-modal learning. Furthermore, we demonstrate that clinically relevant ECG biomarkers, such as fiducial points and QT intervals, can be estimated from PCG in cross-subject settings. These findings advance our understanding of the relationship between electromechanical cardiac modalities, in terms of both waveform characteristics and the timing of cardiac events, with potential applications in novel multimodal cardiac monitoring technologies.
Via

Jun 06, 2025
Abstract:Medical segmentation plays an important role in clinical applications like radiation therapy and surgical guidance, but acquiring clinically acceptable results is difficult. In recent years, progress has been witnessed with the success of utilizing transformer-like models, such as combining the attention mechanism with CNN. In particular, transformer-based segmentation models can extract global information more effectively, compensating for the drawbacks of CNN modules that focus on local features. However, utilizing transformer architecture is not easy, because training transformer-based models can be resource-demanding. Moreover, due to the distinct characteristics in the medical field, especially when encountering mid-sized and small organs with compact regions, their results often seem unsatisfactory. For example, using ViT to segment medical images directly only gives a DSC of less than 50\%, which is far lower than the clinically acceptable score of 80\%. In this paper, we used Mask2Former with deformable attention to reduce computation and proposed offset adjustment strategies to encourage sampling points within the same organs during attention weights computation, thereby integrating compact foreground information better. Additionally, we utilized the 4th feature map in Mask2Former to provide a coarse location of organs, and employed an FCN-based auxiliary head to help train Mask2Former more quickly using Dice loss. We show that our model achieves SOTA (State-of-the-Art) performance on the HaNSeg and SegRap2023 datasets, especially on mid-sized and small organs.Our code is available at link https://github.com/earis/Offsetadjustment\_Background-location\_Decoder\_Mask2former.
Via

Jun 14, 2025
Abstract:Recently, Mamba-based methods have become popular in medical image segmentation due to their lightweight design and long-range dependency modeling capabilities. However, current segmentation methods frequently encounter challenges in fetal ultrasound images, such as enclosed anatomical structures, blurred boundaries, and small anatomical structures. To address the need for balancing local feature extraction and global context modeling, we propose MS-UMamba, a novel hybrid convolutional-mamba model for fetal ultrasound image segmentation. Specifically, we design a visual state space block integrated with a CNN branch (SS-MCAT-SSM), which leverages Mamba's global modeling strengths and convolutional layers' local representation advantages to enhance feature learning. In addition, we also propose an efficient multi-scale feature fusion module that integrates spatial attention mechanisms, which Integrating feature information from different layers enhances the feature representation ability of the model. Finally, we conduct extensive experiments on a non-public dataset, experimental results demonstrate that MS-UMamba model has excellent performance in segmentation performance.
Via

Jun 11, 2025
Abstract:Conditional diffusion models (CDMs) have shown impressive performance across a range of generative tasks. Their ability to model the full data distribution has opened new avenues for analysis-by-synthesis in downstream discriminative learning. However, this same modeling capacity causes CDMs to entangle the class-defining features with irrelevant context, posing challenges to extracting robust and interpretable representations. To this end, we identify Canonical LAtent Representations (CLAReps), latent codes whose internal CDM features preserve essential categorical information while discarding non-discriminative signals. When decoded, CLAReps produce representative samples for each class, offering an interpretable and compact summary of the core class semantics with minimal irrelevant details. Exploiting CLAReps, we develop a novel diffusion-based feature-distillation paradigm, CaDistill. While the student has full access to the training set, the CDM as teacher transfers core class knowledge only via CLAReps, which amounts to merely 10 % of the training data in size. After training, the student achieves strong adversarial robustness and generalization ability, focusing more on the class signals instead of spurious background cues. Our findings suggest that CDMs can serve not just as image generators but also as compact, interpretable teachers that can drive robust representation learning.
* 45 pages,41 figures
Via

Jun 09, 2025
Abstract:Large language models (LLMs) are increasingly used to extract clinical data from electronic health records (EHRs), offering significant improvements in scalability and efficiency for real-world data (RWD) curation in oncology. However, the adoption of LLMs introduces new challenges in ensuring the reliability, accuracy, and fairness of extracted data, which are essential for research, regulatory, and clinical applications. Existing quality assurance frameworks for RWD and artificial intelligence do not fully address the unique error modes and complexities associated with LLM-extracted data. In this paper, we propose a comprehensive framework for evaluating the quality of clinical data extracted by LLMs. The framework integrates variable-level performance benchmarking against expert human abstraction, automated verification checks for internal consistency and plausibility, and replication analyses comparing LLM-extracted data to human-abstracted datasets or external standards. This multidimensional approach enables the identification of variables most in need of improvement, systematic detection of latent errors, and confirmation of dataset fitness-for-purpose in real-world research. Additionally, the framework supports bias assessment by stratifying metrics across demographic subgroups. By providing a rigorous and transparent method for assessing LLM-extracted RWD, this framework advances industry standards and supports the trustworthy use of AI-powered evidence generation in oncology research and practice.
* 18 pages, 3 tables, 1 figure
Via

Jun 06, 2025
Abstract:Reconstructing visual information from brain activity bridges the gap between neuroscience and computer vision. Even though progress has been made in decoding images from fMRI using generative models, a challenge remains in accurately recovering highly complex visual stimuli. This difficulty stems from their elemental density and diversity, sophisticated spatial structures, and multifaceted semantic information. To address these challenges, we propose HAVIR that contains two adapters: (1) The AutoKL Adapter transforms fMRI voxels into a latent diffusion prior, capturing topological structures; (2) The CLIP Adapter converts the voxels to CLIP text and image embeddings, containing semantic information. These complementary representations are fused by Versatile Diffusion to generate the final reconstructed image. To extract the most essential semantic information from complex scenarios, the CLIP Adapter is trained with text captions describing the visual stimuli and their corresponding semantic images synthesized from these captions. The experimental results demonstrate that HAVIR effectively reconstructs both structural features and semantic information of visual stimuli even in complex scenarios, outperforming existing models.
* 15 pages, 6 figures, 3 tabs
Via

Jun 10, 2025
Abstract:Accurate segmentation of anatomical structures in the apical four-chamber (A4C) view of fetal echocardiography is essential for early diagnosis and prenatal evaluation of congenital heart disease (CHD). However, precise segmentation remains challenging due to ultrasound artifacts, speckle noise, anatomical variability, and boundary ambiguity across different gestational stages. To reduce the workload of sonographers and enhance segmentation accuracy, we propose DCD, an advanced deep learning-based model for automatic segmentation of key anatomical structures in the fetal A4C view. Our model incorporates a Dense Atrous Spatial Pyramid Pooling (Dense ASPP) module, enabling superior multi-scale feature extraction, and a Convolutional Block Attention Module (CBAM) to enhance adaptive feature representation. By effectively capturing both local and global contextual information, DCD achieves precise and robust segmentation, contributing to improved prenatal cardiac assessment.
Via

Jun 09, 2025
Abstract:In the context of the digital development of architecture, the automatic segmentation of walls and windows is a key step in improving the efficiency of building information models and computer-aided design. This study proposes an automatic segmentation model for building facade walls and windows based on multimodal semantic guidance, called Segment Any Architectural Facades (SAAF). First, SAAF has a multimodal semantic collaborative feature extraction mechanism. By combining natural language processing technology, it can fuse the semantic information in text descriptions with image features, enhancing the semantic understanding of building facade components. Second, we developed an end-to-end training framework that enables the model to autonomously learn the mapping relationship from text descriptions to image segmentation, reducing the influence of manual intervention on the segmentation results and improving the automation and robustness of the model. Finally, we conducted extensive experiments on multiple facade datasets. The segmentation results of SAAF outperformed existing methods in the mIoU metric, indicating that the SAAF model can maintain high-precision segmentation ability when faced with diverse datasets. Our model has made certain progress in improving the accuracy and generalization ability of the wall and window segmentation task. It is expected to provide a reference for the development of architectural computer vision technology and also explore new ideas and technical paths for the application of multimodal learning in the architectural field.
Via

Jun 11, 2025
Abstract:This paper compares the performance of BiLSTM and CNN+GRU deep learning models for Human Activity Recognition (HAR) on two WiFi-based Channel State Information (CSI) datasets: UT-HAR and NTU-Fi HAR. The findings indicate that the CNN+GRU model has a higher accuracy on the UT-HAR dataset (95.20%) thanks to its ability to extract spatial features. In contrast, the BiLSTM model performs better on the high-resolution NTU-Fi HAR dataset (92.05%) by extracting long-term temporal dependencies more effectively. The findings strongly emphasize the critical role of dataset characteristics and preprocessing techniques in model performance improvement. We also show the real-world applicability of such models in applications like healthcare and intelligent home systems, highlighting their potential for unobtrusive activity recognition.
* This Paper has been Accepted and will appear in the 23rd IEEE/ACIS
International Conference on Software Engineering, Management and Applications
(SERA 2025)
Via
