Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"Information Extraction": models, code, and papers

Kleister: Key Information Extraction Datasets Involving Long Documents with Complex Layouts

May 12, 2021
Tomasz Stanisławek, Filip Graliński, Anna Wróblewska, Dawid Lipiński, Agnieszka Kaliska, Paulina Rosalska, Bartosz Topolski, Przemysław Biecek

The relevance of the Key Information Extraction (KIE) task is increasingly important in natural language processing problems. But there are still only a few well-defined problems that serve as benchmarks for solutions in this area. To bridge this gap, we introduce two new datasets (Kleister NDA and Kleister Charity). They involve a mix of scanned and born-digital long formal English-language documents. In these datasets, an NLP system is expected to find or infer various types of entities by employing both textual and structural layout features. The Kleister Charity dataset consists of 2,788 annual financial reports of charity organizations, with 61,643 unique pages and 21,612 entities to extract. The Kleister NDA dataset has 540 Non-disclosure Agreements, with 3,229 unique pages and 2,160 entities to extract. We provide several state-of-the-art baseline systems from the KIE domain (Flair, BERT, RoBERTa, LayoutLM, LAMBERT), which show that our datasets pose a strong challenge to existing models. The best model achieved an 81.77% and an 83.57% F1-score on respectively the Kleister NDA and the Kleister Charity datasets. We share the datasets to encourage progress on more in-depth and complex information extraction tasks.

* accepted to ICDAR 2021 
  

Ontology-driven Information Extraction

Dec 18, 2015
Weronika T. Adrian, Nicola Leone, Marco Manna

Homogeneous unstructured data (HUD) are collections of unstructured documents that share common properties, such as similar layout, common file format, or common domain of values. Building on such properties, it would be desirable to automatically process HUD to access the main information through a semantic layer -- typically an ontology -- called semantic view. Hence, we propose an ontology-based approach for extracting semantically rich information from HUD, by integrating and extending recent technologies and results from the fields of classical information extraction, table recognition, ontologies, text annotation, and logic programming. Moreover, we design and implement a system, named KnowRex, that has been successfully applied to curriculum vitae in the Europass style to offer a semantic view of them, and be able, for example, to select those which exhibit required skills.

  

BERT-Based Multi-Head Selection for Joint Entity-Relation Extraction

Aug 16, 2019
Weipeng Huang, Xingyi Cheng, Taifeng Wang, Wei Chu

In this paper, we report our method for the Information Extraction task in 2019 Language and Intelligence Challenge. We incorporate BERT into the multi-head selection framework for joint entity-relation extraction. This model extends existing approaches from three perspectives. First, BERT is adopted as a feature extraction layer at the bottom of the multi-head selection framework. We further optimize BERT by introducing a semantic-enhanced task during BERT pre-training. Second, we introduce a large-scale Baidu Baike corpus for entity recognition pre-training, which is of weekly supervised learning since there is no actual named entity label. Third, soft label embedding is proposed to effectively transmit information between entity recognition and relation extraction. Combining these three contributions, we enhance the information extracting ability of the multi-head selection model and achieve F1-score 0.876 on testset-1 with a single model. By ensembling four variants of our model, we finally achieve F1 score 0.892 (1st place) on testset-1 and F1 score 0.8924 (2nd place) on testset-2.

* To appear at NLPCC 2019 
  

TableNet: Deep Learning model for end-to-end Table detection and Tabular data extraction from Scanned Document Images

Jan 06, 2020
Shubham Paliwal, Vishwanath D, Rohit Rahul, Monika Sharma, Lovekesh Vig

With the widespread use of mobile phones and scanners to photograph and upload documents, the need for extracting the information trapped in unstructured document images such as retail receipts, insurance claim forms and financial invoices is becoming more acute. A major hurdle to this objective is that these images often contain information in the form of tables and extracting data from tabular sub-images presents a unique set of challenges. This includes accurate detection of the tabular region within an image, and subsequently detecting and extracting information from the rows and columns of the detected table. While some progress has been made in table detection, extracting the table contents is still a challenge since this involves more fine grained table structure(rows & columns) recognition. Prior approaches have attempted to solve the table detection and structure recognition problems independently using two separate models. In this paper, we propose TableNet: a novel end-to-end deep learning model for both table detection and structure recognition. The model exploits the interdependence between the twin tasks of table detection and table structure recognition to segment out the table and column regions. This is followed by semantic rule-based row extraction from the identified tabular sub-regions. The proposed model and extraction approach was evaluated on the publicly available ICDAR 2013 and Marmot Table datasets obtaining state of the art results. Additionally, we demonstrate that feeding additional semantic features further improves model performance and that the model exhibits transfer learning across datasets. Another contribution of this paper is to provide additional table structure annotations for the Marmot data, which currently only has annotations for table detection.

  

One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis

Jun 06, 2019
Vishal Sunder, Ashwin Srinivasan, Lovekesh Vig, Gautam Shroff, Rohit Rahul

Our interest in this paper is in meeting a rapidly growing industrial demand for information extraction from images of documents such as invoices, bills, receipts etc. In practice users are able to provide a very small number of example images labeled with the information that needs to be extracted. We adopt a novel two-level neuro-deductive, approach where (a) we use pre-trained deep neural networks to populate a relational database with facts about each document-image; and (b) we use a form of deductive reasoning, related to meta-interpretive learning of transition systems to learn extraction programs: Given task-specific transitions defined using the entities and relations identified by the neural detectors and a small number of instances (usually 1, sometimes 2) of images and the desired outputs, a resource-bounded meta-interpreter constructs proofs for the instance(s) via logical deduction; a set of logic programs that extract each desired entity is easily synthesized from such proofs. In most cases a single training example together with a noisy-clone of itself suffices to learn a program-set that generalizes well on test documents, at which time the value of each entity is determined by a majority vote across its program-set. We demonstrate our two-level neuro-deductive approach on publicly available datasets ("Patent" and "Doctor's Bills") and also describe its use in a real-life industrial problem.

* 11 pages, appears in the 13th International Workshop on Neural-Symbolic Learning and Reasoning at IJCAI 2019 
  

Techniques for Jointly Extracting Entities and Relations: A Survey

Mar 10, 2021
Sachin Pawar, Pushpak Bhattacharyya, Girish K. Palshikar

Relation Extraction is an important task in Information Extraction which deals with identifying semantic relations between entity mentions. Traditionally, relation extraction is carried out after entity extraction in a "pipeline" fashion, so that relation extraction only focuses on determining whether any semantic relation exists between a pair of extracted entity mentions. This leads to propagation of errors from entity extraction stage to relation extraction stage. Also, entity extraction is carried out without any knowledge about the relations. Hence, it was observed that jointly performing entity and relation extraction is beneficial for both the tasks. In this paper, we survey various techniques for jointly extracting entities and relations. We categorize techniques based on the approach they adopt for joint extraction, i.e. whether they employ joint inference or joint modelling or both. We further describe some representative techniques for joint inference and joint modelling. We also describe two standard datasets, evaluation techniques and performance of the joint extraction approaches on these datasets. We present a brief analysis of application of a general domain joint extraction approach to a Biomedical dataset. This survey is useful for researchers as well as practitioners in the field of Information Extraction, by covering a broad landscape of joint extraction techniques.

* Accepted at 20th International Conference on Computational Linguistics and Intelligent Text Processing (CICLing 2019) 
  

Should We Rely on Entity Mentions for Relation Extraction? Debiasing Relation Extraction with Counterfactual Analysis

May 08, 2022
Yiwei Wang, Muhao Chen, Wenxuan Zhou, Yujun Cai, Yuxuan Liang, Dayiheng Liu, Baosong Yang, Juncheng Liu, Bryan Hooi

Recent literature focuses on utilizing the entity information in the sentence-level relation extraction (RE), but this risks leaking superficial and spurious clues of relations. As a result, RE still suffers from unintended entity bias, i.e., the spurious correlation between entity mentions (names) and relations. Entity bias can mislead the RE models to extract the relations that do not exist in the text. To combat this issue, some previous work masks the entity mentions to prevent the RE models from overfitting entity mentions. However, this strategy degrades the RE performance because it loses the semantic information of entities. In this paper, we propose the CORE (Counterfactual Analysis based Relation Extraction) debiasing method that guides the RE models to focus on the main effects of textual context without losing the entity information. We first construct a causal graph for RE, which models the dependencies between variables in RE models. Then, we propose to conduct counterfactual analysis on our causal graph to distill and mitigate the entity bias, that captures the causal effects of specific entity mentions in each instance. Note that our CORE method is model-agnostic to debias existing RE systems during inference without changing their training processes. Extensive experimental results demonstrate that our CORE yields significant gains on both effectiveness and generalization for RE. The source code is provided at: https://github.com/vanoracai/CoRE.

* NAACL 2022 
  

Learning from the Best: Rationalizing Prediction by Adversarial Information Calibration

Dec 18, 2020
Lei Sha, Oana-Maria Camburu, Thomas Lukasiewicz

Explaining the predictions of AI models is paramount in safety-critical applications, such as in legal or medical domains. One form of explanation for a prediction is an extractive rationale, i.e., a subset of features of an instance that lead the model to give its prediction on the instance. Previous works on generating extractive rationales usually employ a two-phase model: a selector that selects the most important features (i.e., the rationale) followed by a predictor that makes the prediction based exclusively on the selected features. One disadvantage of these works is that the main signal for learning to select features comes from the comparison of the answers given by the predictor and the ground-truth answers. In this work, we propose to squeeze more information from the predictor via an information calibration method. More precisely, we train two models jointly: one is a typical neural model that solves the task at hand in an accurate but black-box manner, and the other is a selector-predictor model that additionally produces a rationale for its prediction. The first model is used as a guide to the second model. We use an adversarial-based technique to calibrate the information extracted by the two models such that the difference between them is an indicator of the missed or over-selected features. In addition, for natural language tasks, we propose to use a language-model-based regularizer to encourage the extraction of fluent rationales. Experimental results on a sentiment analysis task as well as on three tasks from the legal domain show the effectiveness of our approach to rationale extraction.

* Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021 
  

A Semi-automatic Data Extraction System for Heterogeneous Data Sources: A Case Study from Cotton Industry

Nov 05, 2021
Richi Nayak, Thirunavukarasu Balasubramaniam, Sangeetha Kutty, Sachindra Banduthilaka, Erin Peterson

With the recent developments in digitisation, there are increasing number of documents available online. There are several information extraction tools that are available to extract information from digitised documents. However, identifying precise answers to a given query is often a challenging task especially if the data source where the relevant information resides is unknown. This situation becomes more complex when the data source is available in multiple formats such as PDF, table and html. In this paper, we propose a novel data extraction system to discover relevant and focused information from diverse unstructured data sources based on text mining approaches. We perform a qualitative analysis to evaluate the proposed system and its suitability and adaptability using cotton industry.

* Accepted in the 19th Australasian Data Mining Conference 2021 
  
<<
10
11
12
13
14
15
16
17
18
19
20
21
22
>>