Abstract:Brain tumor segmentation is critical in diagnosis and treatment planning for the disease. Yet, current deep learning methods rely on centralized data collection, which raises privacy concerns and limits generalization across diverse institutions. In this paper, we propose TwinSegNet, which is a privacy-preserving federated learning framework that integrates a hybrid ViT-UNet model with personalized digital twins for accurate and real-time brain tumor segmentation. Our architecture combines convolutional encoders with Vision Transformer bottlenecks to capture local and global context. Each institution fine-tunes the global model of private data to form its digital twin. Evaluated on nine heterogeneous MRI datasets, including BraTS 2019-2021 and custom tumor collections, TwinSegNet achieves high Dice scores (up to 0.90%) and sensitivity/specificity exceeding 90%, demonstrating robustness across non-independent and identically distributed (IID) client distributions. Comparative results against centralized models such as TumorVisNet highlight TwinSegNet's effectiveness in preserving privacy without sacrificing performance. Our approach enables scalable, personalized segmentation for multi-institutional clinical settings while adhering to strict data confidentiality requirements.
Abstract:This paper compares the performance of BiLSTM and CNN+GRU deep learning models for Human Activity Recognition (HAR) on two WiFi-based Channel State Information (CSI) datasets: UT-HAR and NTU-Fi HAR. The findings indicate that the CNN+GRU model has a higher accuracy on the UT-HAR dataset (95.20%) thanks to its ability to extract spatial features. In contrast, the BiLSTM model performs better on the high-resolution NTU-Fi HAR dataset (92.05%) by extracting long-term temporal dependencies more effectively. The findings strongly emphasize the critical role of dataset characteristics and preprocessing techniques in model performance improvement. We also show the real-world applicability of such models in applications like healthcare and intelligent home systems, highlighting their potential for unobtrusive activity recognition.


Abstract:This study introduces a federated learning-based approach to predict HER2 status from hematoxylin and eosin (HE)-stained whole slide images (WSIs), reducing costs and speeding up treatment decisions. To address label imbalance and feature representation challenges in multisite datasets, a point transformer is proposed, incorporating dynamic label distribution, an auxiliary classifier, and farthest cosine sampling. Extensive experiments demonstrate state-of-the-art performance across four sites (2687 WSIs) and strong generalization to two unseen sites (229 WSIs).