Abstract:This paper compares the performance of BiLSTM and CNN+GRU deep learning models for Human Activity Recognition (HAR) on two WiFi-based Channel State Information (CSI) datasets: UT-HAR and NTU-Fi HAR. The findings indicate that the CNN+GRU model has a higher accuracy on the UT-HAR dataset (95.20%) thanks to its ability to extract spatial features. In contrast, the BiLSTM model performs better on the high-resolution NTU-Fi HAR dataset (92.05%) by extracting long-term temporal dependencies more effectively. The findings strongly emphasize the critical role of dataset characteristics and preprocessing techniques in model performance improvement. We also show the real-world applicability of such models in applications like healthcare and intelligent home systems, highlighting their potential for unobtrusive activity recognition.
Abstract:This study introduces a federated learning-based approach to predict HER2 status from hematoxylin and eosin (HE)-stained whole slide images (WSIs), reducing costs and speeding up treatment decisions. To address label imbalance and feature representation challenges in multisite datasets, a point transformer is proposed, incorporating dynamic label distribution, an auxiliary classifier, and farthest cosine sampling. Extensive experiments demonstrate state-of-the-art performance across four sites (2687 WSIs) and strong generalization to two unseen sites (229 WSIs).