Topic:Image To Image Translation
What is Image To Image Translation? Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
Papers and Code
May 04, 2025
Abstract:The acquisition of information-rich images within a limited time budget is crucial in medical imaging. Medical image translation (MIT) can help enhance and supplement existing datasets by generating synthetic images from acquired data. While Generative Adversarial Nets (GANs) and Diffusion Models (DMs) have achieved remarkable success in natural image generation, their benefits - creativity and image realism - do not necessarily transfer to medical applications where highly accurate anatomical information is required. In fact, the imitation of acquisition noise or content hallucination hinder clinical utility. Here, we introduce YODA (You Only Denoise once - or Average), a novel 2.5D diffusion-based framework for volumetric MIT. YODA unites diffusion and regression paradigms to produce realistic or noise-free outputs. Furthermore, we propose Expectation-Approximation (ExpA) DM sampling, which draws inspiration from MRI signal averaging. ExpA-sampling suppresses generated noise and, thus, eliminates noise from biasing the evaluation of image quality. Through extensive experiments on four diverse multi-modal datasets - comprising multi-contrast brain MRI and pelvic MRI-CT - we show that diffusion and regression sampling yield similar results in practice. As such, the computational overhead of diffusion sampling does not provide systematic benefits in medical information translation. Building on these insights, we demonstrate that YODA outperforms several state-of-the-art GAN and DM methods. Notably, YODA-generated images are shown to be interchangeable with, or even superior to, physical acquisitions for several downstream tasks. Our findings challenge the presumed advantages of DMs in MIT and pave the way for the practical application of MIT in medical imaging.
Via

May 14, 2025
Abstract:Vision transformers have demonstrated significant advantages in computer vision tasks due to their ability to capture long-range dependencies and contextual relationships through self-attention. However, existing position encoding techniques, which are largely borrowed from natural language processing, fail to effectively capture semantic-aware positional relationships between image patches. Traditional approaches like absolute position encoding and relative position encoding primarily focus on 1D linear position relationship, often neglecting the semantic similarity between distant yet contextually related patches. These limitations hinder model generalization, translation equivariance, and the ability to effectively handle repetitive or structured patterns in images. In this paper, we propose 2-Dimensional Semantic-Aware Position Encoding ($\text{SaPE}^2$), a novel position encoding method with semantic awareness that dynamically adapts position representations by leveraging local content instead of fixed linear position relationship or spatial coordinates. Our method enhances the model's ability to generalize across varying image resolutions and scales, improves translation equivariance, and better aggregates features for visually similar but spatially distant patches. By integrating $\text{SaPE}^2$ into vision transformers, we bridge the gap between position encoding and perceptual similarity, thereby improving performance on computer vision tasks.
* 14 pages, 4 figures, 3 tables
Via

May 21, 2025
Abstract:Deep neural networks are known to develop similar representations for semantically related data, even when they belong to different domains, such as an image and its description, or the same text in different languages. We present a method for quantitatively investigating this phenomenon by measuring the relative information content of the representations of semantically related data and probing how it is encoded into multiple tokens of large language models (LLMs) and vision transformers. Looking first at how LLMs process pairs of translated sentences, we identify inner ``semantic'' layers containing the most language-transferable information. We find moreover that, on these layers, a larger LLM (DeepSeek-V3) extracts significantly more general information than a smaller one (Llama3.1-8B). Semantic information is spread across many tokens and it is characterized by long-distance correlations between tokens and by a causal left-to-right (i.e., past-future) asymmetry. We also identify layers encoding semantic information within visual transformers. We show that caption representations in the semantic layers of LLMs predict visual representations of the corresponding images. We observe significant and model-dependent information asymmetries between image and text representations.
Via

May 26, 2025
Abstract:Front-end engineering involves a complex workflow where engineers conceptualize designs, translate them into code, and iteratively refine the implementation. While recent benchmarks primarily focus on converting visual designs to code, we present FullFront, a benchmark designed to evaluate Multimodal Large Language Models (MLLMs) \textbf{across the full front-end development pipeline}. FullFront assesses three fundamental tasks that map directly to the front-end engineering pipeline: Webpage Design (conceptualization phase), Webpage Perception QA (comprehension of visual organization and elements), and Webpage Code Generation (implementation phase). Unlike existing benchmarks that use either scraped websites with bloated code or oversimplified LLM-generated HTML, FullFront employs a novel, two-stage process to transform real-world webpages into clean, standardized HTML while maintaining diverse visual designs and avoiding copyright issues. Extensive testing of state-of-the-art MLLMs reveals significant limitations in page perception, code generation (particularly for image handling and layout), and interaction implementation. Our results quantitatively demonstrate performance disparities across models and tasks, and highlight a substantial gap between current MLLM capabilities and human expert performance in front-end engineering. The FullFront benchmark and code are available in https://github.com/Mikivishy/FullFront.
Via

May 15, 2025
Abstract:Inhalation injuries present a challenge in clinical diagnosis and grading due to Conventional grading methods such as the Abbreviated Injury Score (AIS) being subjective and lacking robust correlation with clinical parameters like mechanical ventilation duration and patient mortality. This study introduces a novel deep learning-based diagnosis assistant tool for grading inhalation injuries using bronchoscopy images to overcome subjective variability and enhance consistency in severity assessment. Our approach leverages data augmentation techniques, including graphic transformations, Contrastive Unpaired Translation (CUT), and CycleGAN, to address the scarcity of medical imaging data. We evaluate the classification performance of two deep learning models, GoogLeNet and Vision Transformer (ViT), across a dataset significantly expanded through these augmentation methods. The results demonstrate GoogLeNet combined with CUT as the most effective configuration for grading inhalation injuries through bronchoscopy images and achieves a classification accuracy of 97.8%. The histograms and frequency analysis evaluations reveal variations caused by the augmentation CUT with distribution changes in the histogram and texture details of the frequency spectrum. PCA visualizations underscore the CUT substantially enhances class separability in the feature space. Moreover, Grad-CAM analyses provide insight into the decision-making process; mean intensity for CUT heatmaps is 119.6, which significantly exceeds 98.8 of the original datasets. Our proposed tool leverages mechanical ventilation periods as a novel grading standard, providing comprehensive diagnostic support.
Via

May 04, 2025
Abstract:This study presents a novel approach to enhance the cost-to-quality ratio of image generation with diffusion models. We hypothesize that differences between distilled (e.g. FLUX.1-schnell) and baseline (e.g. FLUX.1-dev) models are consistent and, therefore, learnable within a specialized domain, like portrait generation. We generate a synthetic paired dataset and train a fast image-to-image translation head. Using two sets of low- and high-quality synthetic images, our model is trained to refine the output of a distilled generator (e.g., FLUX.1-schnell) to a level comparable to a baseline model like FLUX.1-dev, which is more computationally intensive. Our results show that the pipeline, which combines a distilled version of a large generative model with our enhancement layer, delivers similar photorealistic portraits to the baseline version with up to an 82% decrease in computational cost compared to FLUX.1-dev. This study demonstrates the potential for improving the efficiency of AI solutions involving large-scale image generation.
* 25th International Conference on Computational Science
Via

May 22, 2025
Abstract:The effective communication of procedural knowledge remains a significant challenge in natural language processing (NLP), as purely textual instructions often fail to convey complex physical actions and spatial relationships. We address this limitation by proposing a language-driven framework that translates procedural text into coherent visual instructions. Our approach models the linguistic structure of instructional content by decomposing it into goal statements and sequential steps, then conditioning visual generation on these linguistic elements. We introduce three key innovations: (1) a constituency parser-based text encoding mechanism that preserves semantic completeness even with lengthy instructions, (2) a pairwise discourse coherence model that maintains consistency across instruction sequences, and (3) a novel evaluation protocol specifically designed for procedural language-to-image alignment. Our experiments across three instructional datasets (HTStep, CaptainCook4D, and WikiAll) demonstrate that our method significantly outperforms existing baselines in generating visuals that accurately reflect the linguistic content and sequential nature of instructions. This work contributes to the growing body of research on grounding procedural language in visual content, with applications spanning education, task guidance, and multimodal language understanding.
* 13 pages, 5 figures, under review
Via

May 23, 2025
Abstract:This paper presents a novel method for monocular patient-to-image intraoperative registration, specifically designed to operate without any external hardware tracking equipment or fiducial point markers. Leveraging a synthetic microscopy surgical scene dataset with a wide range of transformations, our approach directly maps preoperative CT scans to 2D intraoperative surgical frames through a lightweight neural network for real-time cochlear implant surgery guidance via a zero-shot learning approach. Unlike traditional methods, our framework seamlessly integrates with monocular surgical microscopes, making it highly practical for clinical use without additional hardware dependencies and requirements. Our method estimates camera poses, which include a rotation matrix and a translation vector, by learning from the synthetic dataset, enabling accurate and efficient intraoperative registration. The proposed framework was evaluated on nine clinical cases using a patient-specific and cross-patient validation strategy. Our results suggest that our approach achieves clinically relevant accuracy in predicting 6D camera poses for registering 3D preoperative CT scans to 2D surgical scenes with an angular error within 10 degrees in most cases, while also addressing limitations of traditional methods, such as reliance on external tracking systems or fiducial markers.
Via

May 22, 2025
Abstract:Recent optical flow estimation methods often employ local cost sampling from a dense all-pairs correlation volume. This results in quadratic computational and memory complexity in the number of pixels. Although an alternative memory-efficient implementation with on-demand cost computation exists, this is slower in practice and therefore prior methods typically process images at reduced resolutions, missing fine-grained details. To address this, we propose a more efficient implementation of the all-pairs correlation volume sampling, still matching the exact mathematical operator as defined by RAFT. Our approach outperforms on-demand sampling by up to 90% while maintaining low memory usage, and performs on par with the default implementation with up to 95% lower memory usage. As cost sampling makes up a significant portion of the overall runtime, this can translate to up to 50% savings for the total end-to-end model inference in memory-constrained environments. Our evaluation of existing methods includes an 8K ultra-high-resolution dataset and an additional inference-time modification of the recent SEA-RAFT method. With this, we achieve state-of-the-art results at high resolutions both in accuracy and efficiency.
Via

May 20, 2025
Abstract:Artificial intelligence (AI) holds strong potential for medical diagnostics, yet its clinical adoption is limited by a lack of interpretability and generalizability. This study introduces the Pathobiological Dictionary for Liver Cancer (LCP1.0), a practical framework designed to translate complex Pathomics and Radiomics Features (PF and RF) into clinically meaningful insights aligned with existing diagnostic workflows. QuPath and PyRadiomics, standardized according to IBSI guidelines, were used to extract 333 imaging features from hepatocellular carcinoma (HCC) tissue samples, including 240 PF-based-cell detection/intensity, 74 RF-based texture, and 19 RF-based first-order features. Expert-defined ROIs from the public dataset excluded artifact-prone areas, and features were aggregated at the case level. Their relevance to the WHO grading system was assessed using multiple classifiers linked with feature selectors. The resulting dictionary was validated by 8 experts in oncology and pathology. In collaboration with 10 domain experts, we developed a Pathobiological dictionary of imaging features such as PFs and RF. In our study, the Variable Threshold feature selection algorithm combined with the SVM model achieved the highest accuracy (0.80, P-value less than 0.05), selecting 20 key features, primarily clinical and pathomics traits such as Centroid, Cell Nucleus, and Cytoplasmic characteristics. These features, particularly nuclear and cytoplasmic, were strongly associated with tumor grading and prognosis, reflecting atypia indicators like pleomorphism, hyperchromasia, and cellular orientation.The LCP1.0 provides a clinically validated bridge between AI outputs and expert interpretation, enhancing model transparency and usability. Aligning AI-derived features with clinical semantics supports the development of interpretable, trustworthy diagnostic tools for liver cancer pathology.
* 29 pages, 4 figures and 1 table
Via
