Text classification is the process of categorizing text documents into predefined categories or labels.
Neural Architecture Search (NAS) has garnered significant research interest due to its capability to discover architectures superior to manually designed ones. Learning text representation is crucial for text classification and other language-related tasks. The NAS model used in text classification does not have a Hybrid hierarchical structure, and there is no restriction on the architecture structure, due to which the search space becomes very large and mostly redundant, so the existing RL models are not able to navigate the search space effectively. Also, doing a flat architecture search leads to an unorganised search space, which is difficult to traverse. For this purpose, we propose HHNAS-AM (Hierarchical Hybrid Neural Architecture Search with Adaptive Mutation Policies), a novel approach that efficiently explores diverse architectural configurations. We introduce a few architectural templates to search on which organise the search spaces, where search spaces are designed on the basis of domain-specific cues. Our method employs mutation strategies that dynamically adapt based on performance feedback from previous iterations using Q-learning, enabling a more effective and accelerated traversal of the search space. The proposed model is fully probabilistic, enabling effective exploration of the search space. We evaluate our approach on the database id (db_id) prediction task, where it consistently discovers high-performing architectures across multiple experiments. On the Spider dataset, our method achieves an 8% improvement in test accuracy over existing baselines.
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
Vision-language models (VLMs) like CLIP enable zero-shot classification by aligning images and text in a shared embedding space, offering advantages for defense applications with scarce labeled data. However, CLIP's robustness in challenging military environments, with partial occlusion and degraded signal-to-noise ratio (SNR), remains underexplored. We investigate CLIP variants' robustness to occlusion using a custom dataset of 18 military vehicle classes and evaluate using Normalized Area Under the Curve (NAUC) across occlusion percentages. Four key insights emerge: (1) Transformer-based CLIP models consistently outperform CNNs, (2) fine-grained, dispersed occlusions degrade performance more than larger contiguous occlusions, (3) despite improved accuracy, performance of linear-probed models sharply drops at around 35% occlusion, (4) by finetuning the model's backbone, this performance drop occurs at more than 60% occlusion. These results underscore the importance of occlusion-specific augmentations during training and the need for further exploration into patch-level sensitivity and architectural resilience for real-world deployment of CLIP.
Sarcasm, a common feature of human communication, poses challenges in interpersonal interactions and human-machine interactions. Linguistic research has highlighted the importance of prosodic cues, such as variations in pitch, speaking rate, and intonation, in conveying sarcastic intent. Although previous work has focused on text-based sarcasm detection, the role of speech data in recognizing sarcasm has been underexplored. Recent advancements in speech technology emphasize the growing importance of leveraging speech data for automatic sarcasm recognition, which can enhance social interactions for individuals with neurodegenerative conditions and improve machine understanding of complex human language use, leading to more nuanced interactions. This systematic review is the first to focus on speech-based sarcasm recognition, charting the evolution from unimodal to multimodal approaches. It covers datasets, feature extraction, and classification methods, and aims to bridge gaps across diverse research domains. The findings include limitations in datasets for sarcasm recognition in speech, the evolution of feature extraction techniques from traditional acoustic features to deep learning-based representations, and the progression of classification methods from unimodal approaches to multimodal fusion techniques. In so doing, we identify the need for greater emphasis on cross-cultural and multilingual sarcasm recognition, as well as the importance of addressing sarcasm as a multimodal phenomenon, rather than a text-based challenge.
Recent advances in multimodal AI have enabled progress in detecting synthetic and out-of-context content. However, existing efforts largely overlook the intent behind AI-generated images. To fill this gap, we introduce S-HArM, a multimodal dataset for intent-aware classification, comprising 9,576 "in the wild" image-text pairs from Twitter/X and Reddit, labeled as Humor/Satire, Art, or Misinformation. Additionally, we explore three prompting strategies (image-guided, description-guided, and multimodally-guided) to construct a large-scale synthetic training dataset with Stable Diffusion. We conduct an extensive comparative study including modality fusion, contrastive learning, reconstruction networks, attention mechanisms, and large vision-language models. Our results show that models trained on image- and multimodally-guided data generalize better to "in the wild" content, due to preserved visual context. However, overall performance remains limited, highlighting the complexity of inferring intent and the need for specialized architectures.
Graph Neural Networks (GNNs) have demonstrated remarkable results in various real-world applications, including drug discovery, object detection, social media analysis, recommender systems, and text classification. In contrast to their vast potential, training them on large-scale graphs presents significant computational challenges due to the resources required for their storage and processing. Graph Condensation has emerged as a promising solution to reduce these demands by learning a synthetic compact graph that preserves the essential information of the original one while maintaining the GNN's predictive performance. Despite their efficacy, current graph condensation approaches frequently rely on a computationally intensive bi-level optimization. Moreover, they fail to maintain a mapping between synthetic and original nodes, limiting the interpretability of the model's decisions. In this sense, a wide range of decomposition techniques have been applied to learn linear or multi-linear functions from graph data, offering a more transparent and less resource-intensive alternative. However, their applicability to graph condensation remains unexplored. This paper addresses this gap and proposes a novel method called Multi-view Graph Condensation via Tensor Decomposition (GCTD) to investigate to what extent such techniques can synthesize an informative smaller graph and achieve comparable downstream task performance. Extensive experiments on six real-world datasets demonstrate that GCTD effectively reduces graph size while preserving GNN performance, achieving up to a 4.0\ improvement in accuracy on three out of six datasets and competitive performance on large graphs compared to existing approaches. Our code is available at https://anonymous.4open.science/r/gctd-345A.
Radiologic diagnostic errors-under-reading errors, inattentional blindness, and communication failures-remain prevalent in clinical practice. These issues often stem from missed localized abnormalities, limited global context, and variability in report language. These challenges are amplified in 3D imaging, where clinicians must examine hundreds of slices per scan. Addressing them requires systems with precise localized detection, global volume-level reasoning, and semantically consistent natural language reporting. However, existing 3D vision-language models are unable to meet all three needs jointly, lacking local-global understanding for spatial reasoning and struggling with the variability and noise of uncurated radiology reports. We present MedVista3D, a multi-scale semantic-enriched vision-language pretraining framework for 3D CT analysis. To enable joint disease detection and holistic interpretation, MedVista3D performs local and global image-text alignment for fine-grained representation learning within full-volume context. To address report variability, we apply language model rewrites and introduce a Radiology Semantic Matching Bank for semantics-aware alignment. MedVista3D achieves state-of-the-art performance on zero-shot disease classification, report retrieval, and medical visual question answering, while transferring well to organ segmentation and prognosis prediction. Code and datasets will be released.
The scarcity of well-annotated diverse medical images is a major hurdle for developing reliable AI models in healthcare. Substantial technical advances have been made in generative foundation models for natural images. Here we develop `ChexGen', a generative vision-language foundation model that introduces a unified framework for text-, mask-, and bounding box-guided synthesis of chest radiographs. Built upon the latent diffusion transformer architecture, ChexGen was pretrained on the largest curated chest X-ray dataset to date, consisting of 960,000 radiograph-report pairs. ChexGen achieves accurate synthesis of radiographs through expert evaluations and quantitative metrics. We demonstrate the utility of ChexGen for training data augmentation and supervised pretraining, which led to performance improvements across disease classification, detection, and segmentation tasks using a small fraction of training data. Further, our model enables the creation of diverse patient cohorts that enhance model fairness by detecting and mitigating demographic biases. Our study supports the transformative role of generative foundation models in building more accurate, data-efficient, and equitable medical AI systems.




We introduce Drivelology, a unique linguistic phenomenon characterised as "nonsense with depth", utterances that are syntactically coherent yet pragmatically paradoxical, emotionally loaded, or rhetorically subversive. While such expressions may resemble surface-level nonsense, they encode implicit meaning requiring contextual inference, moral reasoning, or emotional interpretation. We find that current large language models (LLMs), despite excelling at many natural language processing (NLP) tasks, consistently fail to grasp the layered semantics of Drivelological text. To investigate this, we construct a small but diverse benchmark dataset of over 1,200 meticulously curated examples, with select instances in English, Mandarin, Spanish, French, Japanese, and Korean. Annotation was especially challenging: each of the examples required careful expert review to verify that it truly reflected Drivelological characteristics. The process involved multiple rounds of discussion and adjudication to address disagreements, highlighting the subtle and subjective nature of the Drivelology. We evaluate a range of LLMs on classification, generation, and reasoning tasks. Our results reveal clear limitations of LLMs: models often confuse Drivelology with shallow nonsense, produce incoherent justifications, or miss the implied rhetorical function altogether. These findings highlight a deeper representational gap in LLMs' pragmatic understanding and challenge the assumption that statistical fluency implies cognitive comprehension. We release our dataset and code to facilitate further research in modelling linguistic depth beyond surface-level coherence.
Semantic text classification requires the understanding of the contextual significance of specific tokens rather than surface-level patterns or keywords (as in rule-based or statistical text classification), making large language models (LLMs) well-suited for this task. However, semantic classification applications in industry, like customer intent detection or semantic role labeling, tend to be highly specialized. They require annotation by domain experts in contrast to general-purpose corpora for pretraining. Further, they typically require high inference throughputs which limits the model size from latency and cost perspectives. Thus, for a range of specialized classification tasks, the preferred solution is to develop customized classifiers by finetuning smaller language models (e.g., mini-encoders, small language models). In this work, we develop a token-driven sparse finetuning strategy to adapt small language models to specialized classification tasks. We identify and finetune a small sensitive subset of model parameters by leveraging task-specific token constructs in the finetuning dataset, while leaving most of the pretrained weights unchanged. Unlike adapter approaches such as low rank adaptation (LoRA), we do not introduce additional parameters to the model. Our approach identifies highly relevant semantic tokens (case study in the Appendix) and outperforms end-to-end finetuning, LoRA, layer selection, and prefix tuning on five diverse semantic classification tasks. We achieve greater stability and half the training costs vs. end-to-end finetuning.