Text classification is the process of categorizing text documents into predefined categories or labels.
Deep neural networks have achieved remarkable success across a variety of tasks, yet they often suffer from unreliable probability estimates. As a result, they can be overconfident in their predictions. Conformal Prediction (CP) offers a principled framework for uncertainty quantification, yielding prediction sets with rigorous coverage guarantees. Existing conformal training methods optimize for overall set size, but shaping the prediction sets in a class-conditional manner is not straightforward and typically requires prior knowledge of the data distribution. In this work, we introduce Class Adaptive Conformal Training (CaCT), which formulates conformal training as an augmented Lagrangian optimization problem that adaptively learns to shape prediction sets class-conditionally without making any distributional assumptions. Experiments on multiple benchmark datasets, including standard and long-tailed image recognition as well as text classification, demonstrate that CaCT consistently outperforms prior conformal training methods, producing significantly smaller and more informative prediction sets while maintaining the desired coverage guarantees.
Qualitative research often contains personal, contextual, and organizational details that pose privacy risks if not handled appropriately. Manual anonymization is time-consuming, inconsistent, and frequently omits critical identifiers. Existing automated tools tend to rely on pattern matching or fixed rules, which fail to capture context and may alter the meaning of the data. This study uses local LLMs to build a reliable, repeatable, and context-aware anonymization process for detecting and anonymizing sensitive data in qualitative transcripts. We introduce a Structured Framework for Adaptive Anonymizer (SFAA) that includes three steps: detection, classification, and adaptive anonymization. The SFAA incorporates four anonymization strategies: rule-based substitution, context-aware rewriting, generalization, and suppression. These strategies are applied based on the identifier type and the risk level. The identifiers handled by the SFAA are guided by major international privacy and research ethics standards, including the GDPR, HIPAA, and OECD guidelines. This study followed a dual-method evaluation that combined manual and LLM-assisted processing. Two case studies were used to support the evaluation. The first includes 82 face-to-face interviews on gamification in organizations. The second involves 93 machine-led interviews using an AI-powered interviewer to test LLM awareness and workplace privacy. Two local models, LLaMA and Phi were used to evaluate the performance of the proposed framework. The results indicate that the LLMs found more sensitive data than a human reviewer. Phi outperformed LLaMA in finding sensitive data, but made slightly more errors. Phi was able to find over 91% of the sensitive data and 94.8% kept the same sentiment as the original text, which means it was very accurate, hence, it does not affect the analysis of the qualitative data.
The proliferation of sophisticated generative AI models has significantly escalated the threat of synthetic manipulations in identity documents, particularly through face swapping and text inpainting attacks. This paper presents TwoHead-SwinFPN, a unified deep learning architecture that simultaneously performs binary classification and precise localization of manipulated regions in ID documents. Our approach integrates a Swin Transformer backbone with Feature Pyramid Network (FPN) and UNet-style decoder, enhanced with Convolutional Block Attention Module (CBAM) for improved feature representation. The model employs a dual-head architecture for joint optimization of detection and segmentation tasks, utilizing uncertainty-weighted multi-task learning. Extensive experiments on the FantasyIDiap dataset demonstrate superior performance with 84.31\% accuracy, 90.78\% AUC for classification, and 57.24\% mean Dice score for localization. The proposed method achieves an F1-score of 88.61\% for binary classification while maintaining computational efficiency suitable for real-world deployment through FastAPI implementation. Our comprehensive evaluation includes ablation studies, cross-device generalization analysis, and detailed performance assessment across 10 languages and 3 acquisition devices.
We consider the problem of distinguishing human-written creative fiction (excerpts from novels) from similar text generated by an LLM. Our results show that, while human observers perform poorly (near chance levels) on this binary classification task, a variety of machine-learning models achieve accuracy in the range 0.93 - 0.98 over a previously unseen test set, even using only short samples and single-token (unigram) features. We therefore employ an inherently interpretable (linear) classifier (with a test accuracy of 0.98), in order to elucidate the underlying reasons for this high accuracy. In our analysis, we identify specific unigram features indicative of LLM-generated text, one of the most important being that the LLM tends to use a larger variety of synonyms, thereby skewing the probability distributions in a manner that is easy to detect for a machine learning classifier, yet very difficult for a human observer. Four additional explanation categories were also identified, namely, temporal drift, Americanisms, foreign language usage, and colloquialisms. As identification of the AI-generated text depends on a constellation of such features, the classification appears robust, and therefore not easy to circumvent by malicious actors intent on misrepresenting AI-generated text as human work.
This paper examines algorithmic lookism-the systematic preferential treatment based on physical appearance-in text-to-image (T2I) generative AI and a downstream gender classification task. Through the analysis of 26,400 synthetic faces created with Stable Diffusion 2.1 and 3.5 Medium, we demonstrate how generative AI models systematically associate facial attractiveness with positive attributes and vice-versa, mirroring socially constructed biases rather than evidence-based correlations. Furthermore, we find significant gender bias in three gender classification algorithms depending on the attributes of the input faces. Our findings reveal three critical harms: (1) the systematic encoding of attractiveness-positive attribute associations in T2I models; (2) gender disparities in classification systems, where women's faces, particularly those generated with negative attributes, suffer substantially higher misclassification rates than men's; and (3) intensifying aesthetic constraints in newer models through age homogenization, gendered exposure patterns, and geographic reductionism. These convergent patterns reveal algorithmic lookism as systematic infrastructure operating across AI vision systems, compounding existing inequalities through both representation and recognition. Disclaimer: This work includes visual and textual content that reflects stereotypical associations between physical appearance and socially constructed attributes, including gender, race, and traits associated with social desirability. Any such associations found in this study emerge from the biases embedded in generative AI systems-not from empirical truths or the authors' views.
Interpretability is significant in computational pathology, leading to the development of multimodal information integration from histopathological image and corresponding text data.However, existing multimodal methods have limited interpretability due to the lack of high-quality dataset that support explicit reasoning and inference and simple reasoning process.To address the above problems, we introduce a novel multimodal pathology large language model with strong reasoning capabilities.To improve the generation of accurate and contextually relevant textual descriptions, we design a semantic reward strategy integrated with group relative policy optimization.We construct a high-quality pathology visual question answering (VQA) dataset, specifically designed to support complex reasoning tasks.Comprehensive experiments conducted on this dataset demonstrate that our method outperforms state-of-the-art methods, even when trained with only 20% of the data.Our method also achieves comparable performance on downstream zero-shot image classification task compared with CLIP.
The emergent reasoning capabilities of Large Language Models (LLMs) offer a transformative paradigm for analyzing text-attributed graphs. While instruction tuning is the prevailing method for adapting pre-trained LLMs to graph learning tasks like node classification, it requires a substantial volume of annotated (INSTRUCTION, OUTPUT) pairs deriving from labeled nodes. This requirement is particularly prohibitive in the social domain, where obtaining expert labels for sensitive or evolving content is costly and slow. Furthermore, standard graph instruction tuning fails to exploit the vast amount of unlabeled nodes, which contain latent correlations due to edge connections that are beneficial for downstream predictions. To bridge this gap, we propose a novel Semi-supervised Instruction Tuning pipeline for Graph Learning, named SIT-Graph. Notably, SIT-Graph is model-agnostic and can be seamlessly integrated into any graph instruction tuning method that utilizes LLMs as the predictor. SIT-Graph operates via an iterative self-training process. Initially, the model is fine-tuned using instruction pairs constructed solely from the labeled nodes. Then it generates confidence-filtered pseudo-responses for unlabeled nodes to strategically augment the dataset for the next round of fine-tuning. Finally, this iterative refinement progressively aligns the LLM with the underlying node correlations. Extensive experiments demonstrate that when incorporated into state-of-the-art graph instruction tuning methods, SIT-Graph significantly enhances their performance on text-attributed graph benchmarks, achieving over 20% improvement under the low label ratio settings.
While Large Language Models (LLMs) produce highly nuanced text simplifications, developers currently lack tools for a holistic, efficient, and reproducible diagnosis of their behavior. This paper introduces the Simplification Profiler, a diagnostic toolkit that generates a multidimensional, interpretable fingerprint of simplified texts. Multiple aggregated simplifications of a model result in a model's fingerprint. This novel evaluation paradigm is particularly vital for languages, where the data scarcity problem is magnified when creating flexible models for diverse target groups rather than a single, fixed simplification style. We propose that measuring a model's unique behavioral signature is more relevant in this context as an alternative to correlating metrics with human preferences. We operationalize this with a practical meta-evaluation of our fingerprints' descriptive power, which bypasses the need for large, human-rated datasets. This test measures if a simple linear classifier can reliably identify various model configurations by their created simplifications, confirming that our metrics are sensitive to a model's specific characteristics. The Profiler can distinguish high-level behavioral variations between prompting strategies and fine-grained changes from prompt engineering, including few-shot examples. Our complete feature set achieves classification F1-scores up to 71.9 %, improving upon simple baselines by over 48 percentage points. The Simplification Profiler thus offers developers a granular, actionable analysis to build more effective and truly adaptive text simplification systems.
Language Identification (LID) is the task of determining the language of a given text and is a fundamental preprocessing step that affects the reliability of downstream NLP applications. While recent work has expanded LID coverage for African languages, existing approaches remain limited in (i) the number of supported languages and (ii) their ability to make fine-grained distinctions among closely related varieties. We introduce AfroScope, a unified framework for African LID that includes AfroScope-Data, a dataset covering 713 African languages, and AfroScope-Models, a suite of strong LID models with broad language coverage. To better distinguish highly confusable languages, we propose a hierarchical classification approach that leverages Mirror-Serengeti, a specialized embedding model targeting 29 closely related or geographically proximate languages. This approach improves macro F1 by 4.55 on this confusable subset compared to our best base model. Finally, we analyze cross linguistic transfer and domain effects, offering guidance for building robust African LID systems. We position African LID as an enabling technology for large scale measurement of Africas linguistic landscape in digital text and release AfroScope-Data and AfroScope-Models publicly.
Large-scale vision-language models such as CLIP achieve strong zero-shot recognition but struggle with classes that are rarely seen during pretraining, including newly emerging entities and culturally specific categories. We introduce LiteEmbed, a lightweight framework for few-shot personalization of CLIP that enables new classes to be added without retraining its encoders. LiteEmbed performs subspace-guided optimization of text embeddings within CLIP's vocabulary, leveraging a PCA-based decomposition that disentangles coarse semantic directions from fine-grained variations. Two complementary objectives, coarse alignment and fine separation, jointly preserve global semantic consistency while enhancing discriminability among visually similar classes. Once optimized, the embeddings are plug-and-play, seamlessly substituting CLIP's original text features across classification, retrieval, segmentation, and detection tasks. Extensive experiments demonstrate substantial gains over prior methods, establishing LiteEmbed as an effective approach for adapting CLIP to underrepresented, rare, or unseen classes.