Abstract:Neural Architecture Search (NAS) has garnered significant research interest due to its capability to discover architectures superior to manually designed ones. Learning text representation is crucial for text classification and other language-related tasks. The NAS model used in text classification does not have a Hybrid hierarchical structure, and there is no restriction on the architecture structure, due to which the search space becomes very large and mostly redundant, so the existing RL models are not able to navigate the search space effectively. Also, doing a flat architecture search leads to an unorganised search space, which is difficult to traverse. For this purpose, we propose HHNAS-AM (Hierarchical Hybrid Neural Architecture Search with Adaptive Mutation Policies), a novel approach that efficiently explores diverse architectural configurations. We introduce a few architectural templates to search on which organise the search spaces, where search spaces are designed on the basis of domain-specific cues. Our method employs mutation strategies that dynamically adapt based on performance feedback from previous iterations using Q-learning, enabling a more effective and accelerated traversal of the search space. The proposed model is fully probabilistic, enabling effective exploration of the search space. We evaluate our approach on the database id (db_id) prediction task, where it consistently discovers high-performing architectures across multiple experiments. On the Spider dataset, our method achieves an 8% improvement in test accuracy over existing baselines.
Abstract:Text-to-SQL bridges the gap between natural language and structured database language, thus allowing non-technical users to easily query databases. Traditional approaches model text-to-SQL as a direct translation task, where a given Natural Language Query (NLQ) is mapped to an SQL command. Recent advances in large language models (LLMs) have significantly improved translation accuracy, however, these methods all require that the target database is pre-specified. This becomes problematic in scenarios with multiple extensive databases, where identifying the correct database becomes a crucial yet overlooked step. In this paper, we propose a three-stage end-to-end text-to-SQL framework to identify the user's intended database before generating SQL queries. Our approach leverages LLMs and prompt engineering to extract implicit information from natural language queries (NLQs) in the form of a ruleset. We then train a large db\_id prediction model, which includes a RoBERTa-based finetuned encoder, to predict the correct Database identifier (db\_id) based on both the NLQ and the LLM-generated rules. Finally, we refine the generated SQL by using critic agents to correct errors. Experimental results demonstrate that our framework outperforms the current state-of-the-art models in both database intent prediction and SQL generation accuracy.
Abstract:Invoices and receipts submitted by employees are visually rich documents (VRDs) with textual, visual and layout information. To protect against the risk of fraud and abuse, it is crucial for organizations to efficiently extract desired information from submitted receipts. This helps in the assessment of key factors such as appropriateness of the expense claim, adherence to spending and transaction policies, the validity of the receipt, as well as downstream anomaly detection at various levels. These documents are heterogeneous, with multiple formats and languages, uploaded with different image qualities, and often do not contain ground truth labels for the efficient training of models. In this paper we propose Task Aware Instruction-based Labelling (TAIL), a method for synthetic label generation in VRD corpuses without labels, and fine-tune a multimodal Visually Rich Document Understanding Model (VRDU) on TAIL labels using response-based knowledge distillation without using the teacher model's weights or training dataset to conditionally generate annotations in the appropriate format. Using a benchmark external dataset where ground truth labels are available, we demonstrate conditions under which our approach performs at par with Claude 3 Sonnet through empirical studies. We then show that the resulting model performs at par or better on the internal expense documents of a large multinational organization than state-of-the-art LMM (large multimodal model) Claude 3 Sonnet while being 85% less costly and ~5X faster, and outperforms layout-aware baselines by more than 10% in Average Normalized Levenshtein Similarity (ANLS) scores due to its ability to reason and extract information from rare formats. Finally, we illustrate the usage of our approach in overpayment prevention.