Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Leveraging the vast open-world knowledge and understanding capabilities of Large Language Models (LLMs) to develop general-purpose, semantically-aware recommender systems has emerged as a pivotal research direction in generative recommendation. However, existing methods face bottlenecks in constructing item identifiers. Text-based methods introduce LLMs' vast output space, leading to hallucination, while methods based on Semantic IDs (SIDs) encounter a semantic gap between SIDs and LLMs' native vocabulary, requiring costly vocabulary expansion and alignment training. To address this, this paper introduces Term IDs (TIDs), defined as a set of semantically rich and standardized textual keywords, to serve as robust item identifiers. We propose GRLM, a novel framework centered on TIDs, employs Context-aware Term Generation to convert item's metadata into standardized TIDs and utilizes Integrative Instruction Fine-tuning to collaboratively optimize term internalization and sequential recommendation. Additionally, Elastic Identifier Grounding is designed for robust item mapping. Extensive experiments on real-world datasets demonstrate that GRLM significantly outperforms baselines across multiple scenarios, pointing a promising direction for generalizable and high-performance generative recommendation systems.
Self-consistency has emerged as a popular technique for improving large language model accuracy on reasoning tasks. The approach is straightforward: generate multiple reasoning paths and select the most common answer through majority voting. While this reliably boosts accuracy, it remains unclear whether these gains reflect genuine improvements in reasoning quality. We investigate a fundamental question that has not been studied before: does inference scaling improve reasoning faithfulness? We conduct a comprehensive empirical study across four frontier models (GPT-5.2, Claude Opus 4.5, Gemini-3-flash-preview, and DeepSeek-v3.2) on 100 GSM8K mathematical reasoning problems. Our analysis employs bootstrap confidence intervals, McNemar's tests for paired comparisons, and Cohen's d effect sizes to quantify the effects rigorously. The results reveal striking differences across models that challenge common assumptions about self-consistency. GPT-5.2 shows the expected pattern: accuracy improves from 78% to 90% at N=5, with faithfulness remaining relatively stable (0.540 to 0.510). Claude Opus 4.5 tells a completely different story. Its accuracy actually drops from 78% to 74.3% while faithfulness jumps dramatically from 0.270 to 0.891 at N=5. DeepSeek-v3.2, already at 98% accuracy, shows ceiling effects with modest faithfulness gains (0.440 to 0.541). Gemini-3-flash improves from 81% to 86% accuracy with a slight faithfulness decrease (0.260 to 0.212). Problem difficulty analysis reveals that GPT-5.2 solves 82% of hard problems while breaking only 13% of easy ones. Claude, in contrast, breaks 23% of easy problems, explaining its accuracy decrease. These findings matter for practitioners: self-consistency is not universally beneficial, and teams should test their specific models before deployment. We release our code and provide practical recommendations for navigating these tradeoffs.
Large Language Models (LLMs) have recently shown strong potential for usage in sequential recommendation tasks through text-only models, which combine advanced prompt design, contrastive alignment, and fine-tuning on downstream domain-specific data. While effective, these approaches overlook the rich visual information present in many real-world recommendation scenarios, particularly in e-commerce. This paper proposes PixRec - a vision-language framework that incorporates both textual attributes and product images into the recommendation pipeline. Our architecture leverages a vision-language model backbone capable of jointly processing image-text sequences, maintaining a dual-tower structure and mixed training objective while aligning multi-modal feature projections for both item-item and user-item interactions. Using the Amazon Reviews dataset augmented with product images, our experiments demonstrate $3\times$ and 40% improvements in top-rank and top-10 rank accuracy over text-only recommenders respectively, indicating that visual features can help distinguish items with similar textual descriptions. Our work outlines future directions for scaling multi-modal recommenders training, enhancing visual-text feature fusion, and evaluating inference-time performance. This work takes a step toward building software systems utilizing visual information in sequential recommendation for real-world applications like e-commerce.
Late-interaction retrieval models like ColBERT achieve superior accuracy by enabling token-level interactions, but their computational cost hinders scalability and integration with Approximate Nearest Neighbor Search (ANNS). We introduce FastLane, a novel retrieval framework that dynamically routes queries to their most informative representations, eliminating redundant token comparisons. FastLane employs a learnable routing mechanism optimized alongside the embedding model, leveraging self-attention and differentiable selection to maximize efficiency. Our approach reduces computational complexity by up to 30x while maintaining competitive retrieval performance. By bridging late-interaction models with ANNS, FastLane enables scalable, low-latency retrieval, making it feasible for large-scale applications such as search engines, recommendation systems, and question-answering platforms. This work opens pathways for multi-lingual, multi-modal, and long-context retrieval, pushing the frontier of efficient and adaptive information retrieval.
Driven by the growth of Web-scale decentralized services, Federated Clustering (FC) aims to extract knowledge from heterogeneous clients in an unsupervised manner while preserving the clients' privacy, which has emerged as a significant challenge due to the lack of label guidance and the Non-Independent and Identically Distributed (non-IID) nature of clients. In real scenarios such as personalized recommendation and cross-device user profiling, the global cluster may be fragmented and distributed among different clients, and the clusters may exist at different granularities or even nested. Although Hierarchical Clustering (HC) is considered promising for exploring such distributions, the sophisticated recursive clustering process makes it more computationally expensive and vulnerable to privacy exposure, thus relatively unexplored under the federated learning scenario. This paper introduces an efficient one-shot hierarchical FC framework that performs client-end distribution exploration and server-end distribution aggregation through one-way prototype-level communication from clients to the server. A fine partition mechanism is developed to generate successive clusterlets to describe the complex landscape of the clients' clusters. Then, a multi-granular learning mechanism on the server is proposed to fuse the clusterlets, even when they have inconsistent granularities generated from different clients. It turns out that the complex cluster distributions across clients can be efficiently explored, and extensive experiments comparing state-of-the-art methods on ten public datasets demonstrate the superiority of the proposed method.
Sanskrit Subhasitas encapsulate centuries of cultural and philosophical wisdom, yet remain underutilized in the digital age due to linguistic and contextual barriers. In this work, we present Pragya, a retrieval-augmented generation (RAG) framework for semantic recommendation of Subhasitas. We curate a dataset of 200 verses annotated with thematic tags such as motivation, friendship, and compassion. Using sentence embeddings (IndicBERT), the system retrieves top-k verses relevant to user queries. The retrieved results are then passed to a generative model (Mistral LLM) to produce transliterations, translations, and contextual explanations. Experimental evaluation demonstrates that semantic retrieval significantly outperforms keyword matching in precision and relevance, while user studies highlight improved accessibility through generated summaries. To our knowledge, this is the first attempt at integrating retrieval and generation for Sanskrit Subhasitas, bridging cultural heritage with modern applied AI.
Estimating the persuasiveness of messages is critical in various applications, from recommender systems to safety assessment of LLMs. While it is imperative to consider the target persuadee's characteristics, such as their values, experiences, and reasoning styles, there is currently no established systematic framework to optimize leveraging a persuadee's past activities (e.g., conversations) to the benefit of a persuasiveness prediction model. To address this problem, we propose a context-aware user profiling framework with two trainable components: a query generator that generates optimal queries to retrieve persuasion-relevant records from a user's history, and a profiler that summarizes these records into a profile to effectively inform the persuasiveness prediction model. Our evaluation on the ChangeMyView Reddit dataset shows consistent improvements over existing methods across multiple predictor models, with gains of up to +13.77%p in F1 score. Further analysis shows that effective user profiles are context-dependent and predictor-specific, rather than relying on static attributes or surface-level similarity. Together, these results highlight the importance of task-oriented, context-dependent user profiling for personalized persuasiveness prediction.
Transferring from a 2-year to a 4-year college is crucial for socioeconomic mobility, yet students often face challenges ensuring their credits are fully recognized, leading to delays in their academic progress and unexpected costs. Determining whether courses at different institutions are equivalent (i.e., articulation) is essential for successful credit transfer, as it minimizes unused credits and increases the likelihood of bachelor's degree completion. However, establishing articulation agreements remains time- and resource-intensive, as all candidate articulations are reviewed manually. Although recent efforts have explored the use of artificial intelligence to support this work, its use in articulation practice remains limited. Given these challenges and the need for scalable support, this study applies artificial intelligence to suggest articulations between institutions in collaboration with the State University of New York system, one of the largest systems of higher education in the US. To develop our methodology, we first surveyed articulation staff and faculty to assess adoption rates of baseline algorithmic recommendations and gather feedback on perceptions and concerns about these recommendations. Building on these insights, we developed a supervised alignment method that addresses superficial matching and institutional biases in catalog descriptions, achieving a 5.5-fold improvement in accuracy over previous methods. Based on articulation predictions of this method and a 61% average surveyed adoption rate among faculty and staff, these findings project a 12-fold increase in valid credit mobility opportunities that would otherwise remain unrealized. This study suggests that stakeholder-informed design of AI in higher education administration can expand student credit mobility and help reshape current institutional decision-making in course articulation.
On December 4, 2025, Anthropic released Anthropic Interviewer, an AI tool for running qualitative interviews at scale, along with a public dataset of 1,250 interviews with professionals, including 125 scientists, about their use of AI for research. Focusing on the scientist subset, I show that widely available LLMs with web search and agentic capabilities can link six out of twenty-four interviews to specific scientific works, recovering associated authors and, in some cases, uniquely identifying the interviewees. My contribution is to show that modern LLM-based agents make such re-identification attacks easy and low-effort: off-the-shelf tools can, with a few natural-language prompts, search the web, cross-reference details, and propose likely matches, effectively lowering the technical barrier. Existing safeguards can be bypassed by breaking down the re-identification into benign tasks. I outline the attack at a high level, discuss implications for releasing rich qualitative data in the age of LLM agents, and propose mitigation recommendations and open problems. I have notified Anthropic of my findings.
Large Language Models (LLMs) have emerged as promising recommendation systems, offering novel ways to model user preferences through generative approaches. However, many existing methods often rely solely on text semantics or incorporate collaborative signals in a limited manner, typically using only user or item embeddings. These methods struggle to handle multiple item embeddings representing user history, reverting to textual semantics and neglecting richer collaborative information. In this work, we propose a simple yet effective solution that projects user and item embeddings, learned from collaborative filtering, into the LLM token space via separate lightweight projector modules. A finetuned LLM then conditions on these projected embeddings alongside textual tokens to generate recommendations. Preliminary results show that this design effectively leverages structured user-item interaction data, improves recommendation performance over text-only LLM baselines, and offers a practical path for bridging traditional recommendation systems with modern LLMs.