Abstract:Road network representation learning (RNRL) has attracted increasing attention from both researchers and practitioners as various spatiotemporal tasks are emerging. Recent advanced methods leverage Graph Neural Networks (GNNs) and contrastive learning to characterize the spatial structure of road segments in a self-supervised paradigm. However, spatial heterogeneity and temporal dynamics of road networks raise severe challenges to the neighborhood smoothing mechanism of self-supervised GNNs. To address these issues, we propose a $\textbf{D}$ual-branch $\textbf{S}$patial-$\textbf{T}$emporal self-supervised representation framework for enhanced road representations, termed as DST. On one hand, DST designs a mix-hop transition matrix for graph convolution to incorporate dynamic relations of roads from trajectories. Besides, DST contrasts road representations of the vanilla road network against that of the hypergraph in a spatial self-supervised way. The hypergraph is newly built based on three types of hyperedges to capture long-range relations. On the other hand, DST performs next token prediction as the temporal self-supervised task on the sequences of traffic dynamics based on a causal Transformer, which is further regularized by differentiating traffic modes of weekdays from those of weekends. Extensive experiments against state-of-the-art methods verify the superiority of our proposed framework. Moreover, the comprehensive spatiotemporal modeling facilitates DST to excel in zero-shot learning scenarios.
Abstract:Drug-target interaction (DTI) prediction is of great significance for drug discovery and drug repurposing. With the accumulation of a large volume of valuable data, data-driven methods have been increasingly harnessed to predict DTIs, reducing costs across various dimensions. Therefore, this paper proposes a $\textbf{L}$arge $\textbf{L}$anguage $\textbf{M}$odel and $\textbf{M}$ulti-$\textbf{M}$odel data co-powered $\textbf{D}$rug $\textbf{T}$arget $\textbf{I}$nteraction prediction framework, named LLM$^3$-DTI. LLM$^3$-DTI constructs multi-modal data embedding to enhance DTI prediction performance. In this framework, the text semantic embeddings of drugs and targets are encoded by a domain-specific LLM. To effectively align and fuse multi-modal embedding. We propose the dual cross-attention mechanism and the TSFusion module. Finally, these multi-modal data are utilized for the DTI task through an output network. The experimental results indicate that LLM$^3$-DTI can proficiently identify validated DTIs, surpassing the performance of the models employed for comparison across diverse scenarios. Consequently, LLM$^3$-DTI is adept at fulfilling the task of DTI prediction with excellence. The data and code are available at https://github.com/chaser-gua/LLM3DTI.




Abstract:Trajectory generation has garnered significant attention from researchers in the field of spatio-temporal analysis, as it can generate substantial synthesized human mobility trajectories that enhance user privacy and alleviate data scarcity. However, existing trajectory generation methods often focus on improving trajectory generation quality from a singular perspective, lacking a comprehensive semantic understanding across various scales. Consequently, we are inspired to develop a HOlistic SEmantic Representation (HOSER) framework for navigational trajectory generation. Given an origin-and-destination (OD) pair and the starting time point of a latent trajectory, we first propose a Road Network Encoder to expand the receptive field of road- and zone-level semantics. Second, we design a Multi-Granularity Trajectory Encoder to integrate the spatio-temporal semantics of the generated trajectory at both the point and trajectory levels. Finally, we employ a Destination-Oriented Navigator to seamlessly integrate destination-oriented guidance. Extensive experiments on three real-world datasets demonstrate that HOSER outperforms state-of-the-art baselines by a significant margin. Moreover, the model's performance in few-shot learning and zero-shot learning scenarios further verifies the effectiveness of our holistic semantic representation.