Abstract:This note introduces a unified theory for causal inference that integrates Riesz regression, covariate balancing, density-ratio estimation (DRE), targeted maximum likelihood estimation (TMLE), and the matching estimator in average treatment effect (ATE) estimation. In ATE estimation, the balancing weights and the regression functions of the outcome play important roles, where the balancing weights are referred to as the Riesz representer, bias-correction term, and clever covariates, depending on the context. Riesz regression, covariate balancing, DRE, and the matching estimator are methods for estimating the balancing weights, where Riesz regression is essentially equivalent to DRE in the ATE context, the matching estimator is a special case of DRE, and DRE is in a dual relationship with covariate balancing. TMLE is a method for constructing regression function estimators such that the leading bias term becomes zero. Nearest Neighbor Matching is equivalent to Least Squares Density Ratio Estimation and Riesz Regression.
Abstract:The goal of policy learning is to train a policy function that recommends a treatment given covariates to maximize population welfare. There are two major approaches in policy learning: the empirical welfare maximization (EWM) approach and the plug-in approach. The EWM approach is analogous to a classification problem, where one first builds an estimator of the population welfare, which is a functional of policy functions, and then trains a policy by maximizing the estimated welfare. In contrast, the plug-in approach is based on regression, where one first estimates the conditional average treatment effect (CATE) and then recommends the treatment with the highest estimated outcome. This study bridges the gap between the two approaches by showing that both are based on essentially the same optimization problem. In particular, we prove an exact equivalence between EWM and least squares over a reparameterization of the policy class. As a consequence, the two approaches are interchangeable in several respects and share the same theoretical guarantees under common conditions. Leveraging this equivalence, we propose a novel regularization method for policy learning. Our findings yield a convex and computationally efficient training procedure that avoids the NP-hard combinatorial step typically required in EWM.
Abstract:Portfolio optimization is a critical task in investment. Most existing portfolio optimization methods require information on the distribution of returns of the assets that make up the portfolio. However, such distribution information is usually unknown to investors. Various methods have been proposed to estimate distribution information, but their accuracy greatly depends on the uncertainty of the financial markets. Due to this uncertainty, a model that could well predict the distribution information at one point in time may perform less accurately compared to another model at a different time. To solve this problem, we investigate a method for portfolio optimization based on Bayesian predictive synthesis (BPS), one of the Bayesian ensemble methods for meta-learning. We assume that investors have access to multiple asset return prediction models. By using BPS with dynamic linear models to combine these predictions, we can obtain a Bayesian predictive posterior about the mean rewards of assets that accommodate the uncertainty of the financial markets. In this study, we examine how to construct mean-variance portfolios and quantile-based portfolios based on the predicted distribution information.
Abstract:This study considers the estimation of the average treatment effect (ATE). For ATE estimation, we estimate the propensity score through direct bias-correction term estimation. Let $\{(X_i, D_i, Y_i)\}_{i=1}^{n}$ be the observations, where $X_i \in \mathbb{R}^p$ denotes $p$-dimensional covariates, $D_i \in \{0, 1\}$ denotes a binary treatment assignment indicator, and $Y_i \in \mathbb{R}$ is an outcome. In ATE estimation, the bias-correction term $h_0(X_i, D_i) = \frac{1[D_i = 1]}{e_0(X_i)} - \frac{1[D_i = 0]}{1 - e_0(X_i)}$ plays an important role, where $e_0(X_i)$ is the propensity score, the probability of being assigned treatment $1$. In this study, we propose estimating $h_0$ (or equivalently the propensity score $e_0$) by directly minimizing the prediction error of $h_0$. Since the bias-correction term $h_0$ is essential for ATE estimation, this direct approach is expected to improve estimation accuracy for the ATE. For example, existing studies often employ maximum likelihood or covariate balancing to estimate $e_0$, but these approaches may not be optimal for accurately estimating $h_0$ or the ATE. We present a general framework for this direct bias-correction term estimation approach from the perspective of Bregman divergence minimization and conduct simulation studies to evaluate the effectiveness of the proposed method.



Abstract:We investigate algorithmic decision problems where agents can respond strategically to the decision maker's (DM) models. The demand for clear and actionable explanations from DMs to (potentially strategic) agents continues to rise. While prior work often treats explanations as full model disclosures, explanations in practice might convey only partial information, which can lead to misinterpretations and harmful responses. When full disclosure of the predictive model is neither feasible nor desirable, a key open question is how DMs can use explanations to maximise their utility without compromising agent welfare. In this work, we explore well-known local and global explanation methods, and establish a necessary condition to prevent explanations from misleading agents into self-harming actions. Moreover, with conditional homogeneity, we establish that action recommendation (AR)-based explanations are sufficient for non-harmful responses, akin to the revelation principle in information design. To operationalise AR-based explanations, we propose a simple algorithm to jointly optimise the predictive model and AR policy to balance DM outcomes with agent welfare. Our empirical results demonstrate the benefits of this approach as a more refined strategy for safe and effective partial model disclosure in algorithmic decision-making.
Abstract:The estimation of average treatment effects (ATEs), defined as the difference in expected outcomes between treatment and control groups, is a central topic in causal inference. This study develops semiparametric efficient estimators for ATE estimation in a setting where only a treatment group and an unknown group-comprising units for which it is unclear whether they received the treatment or control-are observable. This scenario represents a variant of learning from positive and unlabeled data (PU learning) and can be regarded as a special case of ATE estimation with missing data. For this setting, we derive semiparametric efficiency bounds, which provide lower bounds on the asymptotic variance of regular estimators. We then propose semiparametric efficient ATE estimators whose asymptotic variance aligns with these efficiency bounds. Our findings contribute to causal inference with missing data and weakly supervised learning.
Abstract:This study proposes a debiasing method for smooth nonparametric estimators. While machine learning techniques such as random forests and neural networks have demonstrated strong predictive performance, their theoretical properties remain relatively underexplored. Specifically, many modern algorithms lack assurances of pointwise asymptotic normality and uniform convergence, which are critical for statistical inference and robustness under covariate shift and have been well-established for classical methods like Nadaraya-Watson regression. To address this, we introduce a model-free debiasing method that guarantees these properties for smooth estimators derived from any nonparametric regression approach. By adding a correction term that estimates the conditional expected residual of the original estimator, or equivalently, its estimation error, we obtain a debiased estimator with proven pointwise asymptotic normality, uniform convergence, and Gaussian process approximation. These properties enable statistical inference and enhance robustness to covariate shift, making the method broadly applicable to a wide range of nonparametric regression problems.
Abstract:This study investigates an asymptotically minimax optimal algorithm in the two-armed fixed-budget best-arm identification (BAI) problem. Given two treatment arms, the objective is to identify the arm with the highest expected outcome through an adaptive experiment. We focus on the Neyman allocation, where treatment arms are allocated following the ratio of their outcome standard deviations. Our primary contribution is to prove the minimax optimality of the Neyman allocation for the simple regret, defined as the difference between the expected outcomes of the true best arm and the estimated best arm. Specifically, we first derive a minimax lower bound for the expected simple regret, which characterizes the worst-case performance achievable under the location-shift distributions, including Gaussian distributions. We then show that the simple regret of the Neyman allocation asymptotically matches this lower bound, including the constant term, not just the rate in terms of the sample size, under the worst-case distribution. Notably, our optimality result holds without imposing locality restrictions on the distribution, such as the local asymptotic normality. Furthermore, we demonstrate that the Neyman allocation reduces to the uniform allocation, i.e., the standard randomized controlled trial, under Bernoulli distributions.




Abstract:This study introduces a debiasing method for regression estimators, including high-dimensional and nonparametric regression estimators. For example, nonparametric regression methods allow for the estimation of regression functions in a data-driven manner with minimal assumptions; however, these methods typically fail to achieve $\sqrt{n}$-consistency in their convergence rates, and many, including those in machine learning, lack guarantees that their estimators asymptotically follow a normal distribution. To address these challenges, we propose a debiasing technique for nonparametric estimators by adding a bias-correction term to the original estimators, extending the conventional one-step estimator used in semiparametric analysis. Specifically, for each data point, we estimate the conditional expected residual of the original nonparametric estimator, which can, for instance, be computed using kernel (Nadaraya-Watson) regression, and incorporate it as a bias-reduction term. Our theoretical analysis demonstrates that the proposed estimator achieves $\sqrt{n}$-consistency and asymptotic normality under a mild convergence rate condition for both the original nonparametric estimator and the conditional expected residual estimator. Notably, this approach remains model-free as long as the original estimator and the conditional expected residual estimator satisfy the convergence rate condition. The proposed method offers several advantages, including improved estimation accuracy and simplified construction of confidence intervals.
Abstract:This study introduces a doubly robust (DR) estimator for regression discontinuity (RD) designs. In RD designs, treatment effects are estimated in a quasi-experimental setting where treatment assignment depends on whether a running variable surpasses a predefined cutoff. A common approach in RD estimation is to apply nonparametric regression methods, such as local linear regression. In such an approach, the validity relies heavily on the consistency of nonparametric estimators and is limited by the nonparametric convergence rate, thereby preventing $\sqrt{n}$-consistency. To address these issues, we propose the DR-RD estimator, which combines two distinct estimators for the conditional expected outcomes. If either of these estimators is consistent, the treatment effect estimator remains consistent. Furthermore, due to the debiasing effect, our proposed estimator achieves $\sqrt{n}$-consistency if both regression estimators satisfy certain mild conditions, which also simplifies statistical inference.